共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
目的 研究新一代飞机用TC1钛合金板材在不同温度和应变速率下的热塑性变形行为,进行热变形本构建模,构建热加工图。方法 在Gleeble-3500热模拟试验机上开展TC1钛合金板材在温度为500~650℃、应变速率为0.01~0.0001 s-1条件下的等温恒应变速率单向拉伸试验,利用应变补偿的双曲正弦模型进行热变形本构拟合,绘制热加工图。结果 在同一温度下,TC1钛合金的流动应力随应变速率的减小而降低,但伸长率增加,最大断裂应变增大;变形温度在500℃时,加工硬化占据主导地位,随着温度升高至550、600、650℃,硬化阶段变短,应力达到峰值后很快下降,发生软化,此时热软化占主要地位。结论 建立的应变补偿的双曲正弦本构模型能够有效描述TC1钛合金板材在不同温度和应变速率条件下的热塑性变形行为;根据建立的TC1钛合金板材热加工图,可以确定其热加工工艺窗口为600~650℃、0.000 1~0.001 s-1,为TC1钛合金板的热加工提供科学指导。 相似文献
3.
目的研究变形温度、应变速率等热力参数对TC21钛合金流动应力的影响规律,并构建出TC21钛合金本构方程。方法在热模拟试验机上对TC21钛合金进行了等温恒应变速率压缩实验,分析其真应力-真应变曲线。结果获得了该合金在变形温度范围为760~920℃、应变速率范围为0.001~10 s-1的流动应力数据,采用多元线性回归法建立了该合金的本构方程。结论误差分析表明,该本构方程具有较高精度,可为TC21钛合金锻造过程中的数值模拟和锻造热力参数的合理制定提供理论依据。 相似文献
4.
首先对等轴状TC4钛合金疲劳试样表面进行了不同时间的高能喷丸,制备出一定深度的纳米表层,然后采用小尺寸弹丸进行表面损伤修复喷丸,提高纳米表层质量,最后对不同喷丸状态的试样进行了疲劳试验。结果表明:复合喷丸使等轴状TC4钛合金的疲劳强度相比未喷丸状态提高了34%,在单纯高能喷丸纳米化方法的基础上进一步提高了12%;高能喷丸在试样表面形成的损伤阻碍了表层纳米化提高疲劳强度的效果,通过修复喷丸可以修复部分高能喷丸损伤。 相似文献
5.
目的 比较Arrhenius方程和机器学习方法在TC21钛合金本构模型建立中的优劣,为TC21钛合金在实际工程应用中的性能预测、优化设计和安全评估提供理论指导。方法 通过使用Gleeble-3500热模拟机,获取了锻态TC21钛合金在不同温度和应变速率下的真实应力应变数据。基于实验结果,分别采用Arrhenius方法和支持向量机方法建立了相应的本构模型。相较于基于热力学原理的Arrhenius本构方程,采用支持向量机方法的本构模型更为先进。该模型能够从有限的数据中深入挖掘材料性能与温度、应变速率之间的复杂非线性关系,从而更准确地预测TC21钛合金在不同条件下的力学性能。为了全面评估这2种模型的预测准确性,计算了它们的模型相关系数和均方根误差。结果 研究结果表明,基于机器学习的本构模型在预测TC21钛合金的应力应变行为方面展现出显著的优势。其相关系数高达0.977 4,远高于Arrhenius模型的0.931 7。在评估预测精度的均方根误差上,机器学习方法也表现出色,仅为5.49,相较于Arrhenius模型的20.67显著降低。结论 利用机器学习方法建立的TC21钛合金本构模型具有更高的精度和可靠性。在实际工程应用中,这将为钛合金的性能预测、优化设计和安全评估提供更为准确的科学依据。 相似文献
6.
7.
目的 研究工业纯钛TA2在变形温度为800~950℃、应变速率为0.001~1 s-1、压下量为50%条件下的热压缩变形行为,构建材料高温本构方程及热加工图。方法 利用Gleeble–3500热模拟试验机进行热压缩试验,对实测流变曲线进行摩擦修正,通过线性回归拟合等方法建立本构方程,基于动态材料模型构建工业纯钛TA2热加工图,确定材料最佳热变形区域。结果 工业纯钛TA2热变形激活能Q为473.491 kJ/mol,应力指数n为3.876 6;最佳热变形参数为变形温度850~950℃、应变速率0.02~0.35 s-1。结论 工业纯钛TA2摩擦修正后的流变应力值均低于实测值,流动应力随变形温度的升高和应变速率的减小而降低。所建立的Arrhenius本构模型可较为准确地描述工业纯钛高温流变行为。工业纯钛TA2在中高温中等应变速率条件下加工性能良好,该区域材料发生了动态再结晶组织转变。 相似文献
8.
目的 研究紧固件用冷拔态GH4738合金棒材在不同工艺参数下的热变形行为,为紧固件热加工工艺参数优化提供理论指导。方法 采用Gleeble-3500热模拟实验机对冷拔态GH4738合金棒材在变形温度1 000~1 080 ℃、应变速率1~10 s−1条件下进行了热压缩实验,变形量为50%。计算了该合金的材料常数和变形激活能Q,建立了基于峰值应力的冷拔态GH4738合金的本构方程,根据动态材料模型理论绘制了冷拔态GH4738合金的能量耗散图和失稳图,获得了合金在不同应变下的热加工图,并讨论了显微组织演变情况。结果 冷拔态GH4738合金的流变应力随着变形温度的增加或应变速率的减小而降低。线性回归的相关系数证实了描述该材料热变形行为的本构方程的准确性。基于冷拔态GH4738合金的热加工图及显微组织验证结果可得,冷拔态GH4738合金的主要失稳区工艺参数区间为1 000~1 035℃/0.12~3 s−1,1 030~1 072℃/ 0.25~10 s−1和1 075~1 080 ℃/2.72~10 s−1。热加工较佳工艺条件为1 000~1 028 ℃/0.02~0.14 s−1和1 040~1 080 ℃/ 0.06~0.74 s−1。结论 通过对冷拔态GH4738合金热变形本构方程和热加工图进行研究,获得了冷拔态GH4738合金优化的热变形工艺参数,可用于指导冷拔态GH4738合金的紧固件热加工成形。 相似文献
9.
目的 研究锻态GH4169合金的热变形行为,获得优化的热加工参数。方法 采用Gleeble 3500热模拟实验机对锻态GH4169合金进行不同工艺参数的热压缩实验,建立锻态GH4169合金的热变形本构方程,分析流变应力与热加工参数之间的关系。根据获得的流变应力–应变曲线建立锻态GH4169合金的热加工图。采用金相显微镜观察锻态GH4169合金变形后的显微组织。结果 锻态GH4169合金的应力随变形温度的增加和应变速率的降低而降低。基于锻态GH4169合金的热加工图可知,锻态GH4169合金可热加工的区域分别为987~1 027℃/0.026~0.01 s-1和1 070~1 100℃/0.026~0.01 s-1,最优热加工参数分别为1 000℃/0.01 s-1和1100℃/0.01s-1。通过金相组织结果分析可知,锻态GH4169合金无论在低温高应变速率条件下,还是在高温低应变速率条件下都发生了再结晶。对于热加工图中的流变失稳区,合金的动态再结晶主要与变形热有关。对于热加工图中可热加工的区域,合... 相似文献
10.
使用Gleeble-3800热模拟试验机对TA5钛合金进行等温恒应变速率压缩,研究其在变形温度为850~1050℃、应变速率为0.001~10 s-1和最大变形量为60%条件下的高温热变形行为;建立了引入物理参量的应变补偿本构模型,并根据DMM模型得到了加工图。结果表明:TA5钛合金为正应变速率敏感性和负变形温度相关性材料;考虑物理参量的应变补偿本构模型具有较高的预测精度,其相关系数R为0.99,平均相对误差AARE为8.95%。分析加工图和观察微观组织,发现失稳区域(850~990℃,0.05~10 s-1)的主要变形机制为局部流动;稳定区域(870~990℃,0.005~0.05 s-1)的主要变形机制为动态回复和动态再结晶。TA5钛合金的最佳热加工工艺参数范围为870~990℃和0.005~0.05 s-1。 相似文献
11.
12.
《材料科学技术学报》2017,(7)
The hot working behavior of Mg-Gd-Y-Nb-Zr alloy was investigated using constitutive model and hot processing maps in this work. Isothermal compression tests were conducted with temperature and strain rate range of 703–773 K and 0.01–5 s~(-1), respectively. Improved Arrhenius-type equation incorporated with strain compensations was used to predict flow behavior of the alloy, and the predictability was evaluated using correlation coefficient, root mean square error and absolute relative error. Processing maps were constructed at different strains for Mg-Gd-Y-Nb-Zr alloy based on dynamic materials model.The processing maps are divided into three domains and the corresponding microstructure evolutions are referred to the forming of straight grain boundaries, twinning, dynamic recrystallization and grain growth. Instability occurred mainly at the strain rate range of 0.3s~(-1)–0.5s~(-1). The optimum processing domain is mainly at the temperature range of 703–765 K with the strain rate range of 0.01–0.1 s~(-1). 相似文献
13.
14.
15.
16.
采用热力模拟实验方法进行热压缩变形实验,研究了一种新型Al-Zn-Mg-Cu高强铝合金铸态组织在变形温度为300~450℃,应变速率为10-3~10s-1,压缩变形量为50%条件下的热变形行为,建立了该合金的热加工图。变形温度和应变速率对该合金流变应力的影响显著;实验参数条件下,该合金流变应力曲线呈现稳态动态回复型曲线特征。热加工图和组织分析表明:当应变较小时(ε=0.1),合金具备铸态组织特征,合适的热加工参数:350~450℃,应变速率10-3~10-2s-1;当应变较大时(ε=0.5),合金具备锻态组织特征,较佳的热加工参数:300~450℃,应变速率10-3~10-1s-1。 相似文献
17.
目的研究Moenl400合金的热变形流变行为,确定合金热压缩变形的流变应力本构方程。方法在Gleeble1500热模拟机上对Ni-Cu固溶体单相合金Monel400进行等温热压缩实验,研究Monel400合金在变形温度为1173~1423 K、应变速率为0.01~10 s~(-1)时的流变应力;Monel400合金的本构模型为含有ZenerHollomon参数的双曲正弦函数模型,通过回归分析获得了材料常数Q,ln A,n,α与真应变ε的关系;并对不同变形条件下的实测值与计算值进行对比。结果 Moenl400合金的流变应力随温度的升高和应变速率的降低而降低;Moenl400合金流变应力的计算值与实验值吻合较好。结论通过计算得到的本构模型能够较好地表征Monel400合金的高温流变特性。 相似文献
18.
在Gleeble-1500热模拟机上进行了Ti6213合金热模拟压缩试验,变形温度范围为800-1050℃,应变速率范围为0.001-10 s-1,最大变形量为60%,并根据动态材料模型建立了加工图。结果表明,合金在高温变形时主要有2个合适的加工区域,一个是变形温度800-950℃,应变速率0.01 s-1以下区域;另一个在相变温度以下40℃内,应变速率10 s-1以上区域。在900-930℃和0.001 s-1的变形条件下,出现耗散率峰值为65%,高m值,S形应力和应变速率对数曲线的现象,合金表现出超塑特性。拉伸实验进一步表明,延伸率可达512%,组织为两相混合组织。另外,合金在800-930℃和大于0.01 s-1的条件下出现集中变形带,表现为局部流变特征。 相似文献