首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
This paper deals with a variational approach of the displacement discontinuity method. This method is an indirect boundary element technique which uses the double layer potential representation of displacements and stresses. The variational approach presented here is based upon the theorem of minimum potential energy in elasticity. In the numerical procedure, the global shape function used to approximate the displacement discontinuity distribution is the continuous piecewise linear function. Regular displacements and resultant force expressions are obtained from these shape functions and these expressions are used to build the system of linear equations. The method is applied to crack problems in both infinite and finite bodies. The stress intensity factors are then calculated and high accurate numerical results are obtained.  相似文献   

3.
Homogeneous non-dispersive anisotropic materials, characterized by a positive constant permeability and a symmetric positive definite conductivity tensor, are considered in the paper. In these anisotropic materials, the electric and magnetic dyadic Green's functions are defined as electric and magnetic fields arising from impulsive current dipoles and satisfying the time-dependent Maxwell's equations in quasi-static approximation. A new method of deriving these dyadic Green's functions is suggested in the paper. This method consists of several steps: equations for electric and magnetic dyadic Green's functions are written in terms of the Fourier modes; explicit formulae for the Fourier modes of dyadic Green's functions are derived using the matrix transformations and solutions of some ordinary differential equations depending on the Fourier parameters; the inverse Fourier transform is applied to obtained formulae to find explicit formulae for dyadic Green's functions.  相似文献   

4.
A new formulation of the boundary element method (BEM) is proposed in this paper to calculate stress intensity factors for cracked 2-D anisotropic materials. The most outstanding feature of this new approach is that the displacement and traction integral equations are collocated on the outside boundary of the problem (no-crack boundary) only and on one side of the crack surfaces only, respectively. Since the new BEM formulation uses displacements or tractions as unknowns on the outside boundary and displacement differences as unknowns on the crack surfaces, the formulation combines the best attributes of the traditional displacement BEM as well as the displacement discontinuity method (DDM). Compared with the recently proposed dual BEM, the present approach doesn't require dua elements and nodes on the crack surfaces, and further, it can be used for anisotropic media with cracks of any geometric shapes. Numerical examples of calculation of stress intensity factors were conducted, and excellent agreement with previously published results was obtained. The authors believe that the new BEM formulation presented in this paper will provide an alternative and yet efficient numerical technique for the study of cracked 2-D anisotropic media, and for the simulation of quasi-static crack propagation.  相似文献   

5.
 The force problem of fracture mechanics for orthotropic body is solved by boundary element method. The equations of plane strain state are used. The key point of this paper is obtaining the influence functions for finite segment with constant displacement discontinuities in the main axes of orthotropy. They have been deduced by means of two-dimensional Fourier transform and theory of generalized functions. The straight crack under the action of uniform tension in the infinity is considered by using obtained influence functions. The calculations were carried out for isotropic and two orthotropic materials. Received 6 November 2000  相似文献   

6.
A general Boundary Element Analysis of 2-D Linear Elastic Fracture Mechanics   总被引:10,自引:0,他引:10  
This paper presents a boundary element method (BEM) analysis of linear elastic fracture mechanics in two-dimensional solids. The most outstanding feature of this new analysis is that it is a single-domain method, and yet it is very accurate, efficient and versatile: Material properties in the medium can be anisotropic as well as isotropic. Problem domain can be finite, infinite or semi-infinite. Cracks can be of multiple, branched, internal or edged type with a straight or curved shape. Loading can be of in-plane or anti-plane, and can be applied along the no-crack boundary or crack surface. Furthermore, the body-force case can also be analyzed. The present BEM analysis is an extension of the work by Pan and Amadei (1996a) and is such that the displacement and traction integral equations are collocated, respectively, on the no-crack boundary and on one side of the crack surface. Since in this formulation the displacement and/or traction are used as unknowns on the no-crack boundary and the relative crack displacement (i.e. displacement discontinuity) as unknown on the crack surface, it possesses the advantages of both the traditional displacement BEM and the displacement discontinuity method (DDM) and yet gets rid of the disadvantages associated with these methods when modeling fracture mechanics problems. Numerical examples of calculation of stress intensity factors (SIFs) for various benchmark problems were conducted and excellent agreement with previously published results was obtained. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
This paper is concerned with stress intensity factors for cracks emanating from a triangular or square hole under biaxial loads by means of a new boundary element method. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfied and the crack‐tip displacement discontinuity elements proposed by the author. In the boundary element implementation, the left or the right crack‐tip displacement discontinuity element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The method is called a Hybrid Displacement Discontinuity Method (HDDM). Numerical examples are included to show that the method is very efficient and accurate for calculating stress intensity factors for plane elastic crack problems. In addition, the present numerical results can reveal the effect of the biaxial loads on stress intensity factors.  相似文献   

8.
This paper concerns stress intensity factors of cracks emanating from a triangular or square hole in an infinite plate subjected to internal pressure calculated by means of a boundary element method, which consists of constant displacement discontinuity element presented by Crouch and Starfied and crack tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Numerical examples are included to show that the method is very efficient and accurate for calculating stress intensity factors of plane elasticity crack problems. Specifically, the numerical results of stress intensity factors of cracks emanating from a triangular or square hole in an infinite plate subjected to internal pressure are given.  相似文献   

9.
The conventional displacement discontinuity method is extended to study a vertical crack under electrically impermeable condition, running parallel to the poling direction and normal to the plane of isotropy in three-dimensional transversely isotropic piezoelectric media. The extended Green's functions specifically for extended point displacement discontinuities are derived based on the Green's functions of extended point forces and the Somigliana identity. The hyper-singular displacement discontinuity boundary integral equations are also derived. The asymptotical behavior near the crack tips along the crack front is studied and the ordinary 1/2 singularity is obtained at the tips. The extended field intensity factors are expressed in terms of the extended displacement discontinuity on crack faces. Numerical results on the extended field intensity factors for a vertical square crack are presented using the proposed extended displacement discontinuity method.  相似文献   

10.
Short fatigue crack propagation often determines the service life of cyclically loaded components and is highly influenced by microstructural features such as grain boundaries. A two-dimensional model to simulate the growth of these stage I-cracks is presented. Cracks are discretised by displacement discontinuity boundary elements and the direct boundary element method is used to mesh the grain boundaries. A superposition procedure couples these different boundary element methods to employ them in one model. Varying elastic properties of the grains are considered and their influence on short crack propagation is studied. A change in crack tip slide displacement determining short crack propagation is observed as well as an influence on the crack path.  相似文献   

11.
This paper is concerned with the development of a numerical procedure for solving complex boundary value problems in plane elastostatics. This procedure—the displacement discontinuity method—consists simply of placing N displacement discontinuities of unknown magnitude along the boundaries of the region to be analyzed, then setting up and solving a system of algebraic equations to find the discontinuity values that produce prescribed boundary tractions or displacements. The displacement discontinuity method is in some respects similar to integral equation or ‘influence function’ techniques, and contrasts with finite difference and finite element procedures in that approximations are made only on the boundary contours, and not in the field. The method is illustrated by comparing computed results with the analytical solutions of two boundary value problems: a circular disc subjected to diametral compression, and a circular hole in an infinite plate under a uniaxial stress field. In both cases the numerical results are in excellent agreement with the exact solutions.  相似文献   

12.
The paper presents two fully equivalent and regular forms of the hypersingular Somigliana stress identity in elasticity that are appropriate for problems in which the displacement field (and resulting stresses) is C1,α continuous. Each form is found as the result of a single decomposition process on the kernels of the Somigliana stress identity in three dimensions. The results show that the use of a simple stress state for regularization arises in a direct manner from the Somigliana stress identity, just as the use of a constant displacement state regularization arose naturally for the Somigliana displacement identity. The results also show that the same construction leads naturally to a finite part form of the same identity. While various indirect constructions of the equivalents to these findings are published, none of the earlier forms address the fundamental issue of the usual discontinuities of boundary data in the hypersingular Somigliana stress identity that arise at corners and edges. These new findings specifically focus on the corner problem and establish that the previous requirements for continuity on the densities in the hypersingular Somigliana stress identity are replaced by a sole requirement on displacement field continuity. The resulting regularized and finite part forms of the Somigliana stress identity leads to a regularized form of the stress boundary integral equation (stress-BIE). The regularized stress-BIE is shown to properly allow piecewise discontinuity of the boundary data subject only to C1,α continuity of the underlying displacement field. The importance of the findings is in their application to boundary element modeling of the hypersingular problem. The piecewise discontinuity derivation for corners is found to provide a rigorous and non-singular basis for collocation of the discontinuous boundary data for both the regularized and finite part forms of the stress-BIE. The boundary stress solution for both forms is found to be an average of the computed stresses at collocation points at the vertices of boundary element meshes. Collocation at these points is shown to be without any unbounded terms in the formulation thereby eliminating the use of non-conforming elements for the hypersingular equations. The analytical findings in this paper confirm the correct use of both regularized and finite part forms of the stress-BIE that have been the basis of boundary element analysis previously published by the first author of the current paper.  相似文献   

13.
This note concerns with stress intensity factors of cracks emanating from a square hole in rectangular plate under biaxial loads by means of the boundary element method which consists of the non-singular displacement discontinuity element presented by Crouch and Starfied and the crack tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundary. The present numerical results illustrate that the present approach is very effective and accurate for calculating stress intensity factors of complicated cracks in a finite plate and can reveal the effect of the biaxial load and the cracked body geometry on stress intensity factors.  相似文献   

14.
We present a boundary integral formulation for anisotropic interface crack problems based on an exact Green's function. The fundamental displacement and traction solutions needed for the boundary integral equations are obtained from the Green's function. The traction-free boundary conditions on the crack faces are satisfied exactly with the Green's function so no discretization of the crack surfaces is necessary. The analytic forms of the interface crack displacement and stress fields are contained in the exact Green's function thereby offering advantage over modeling strategies for the crack. The Green's function contains both the inverse square root and oscillatory singularities associated with the elastic, anisotropic interface crack problem. The integral equations for a boundary element analysis are presented and an example problem given for interface cracking in a copper-nickel bimaterial.  相似文献   

15.
This paper develops Somigliana type boundary integral equations for 2D thermoelectroelasticity of anisotropic solids with cracks and thin inclusions. Two approaches for obtaining of these equations are proposed, which validate each other. Derived boundary integral equations contain domain integrals only if the body forces or distributed heat sources are present, which is advantageous comparing to the existing ones. Closed-form expressions are obtained for all kernels. A model of a thin pyroelectric inclusion is obtained, which can be also used for the analysis of solids with impermeable, permeable and semi-permeable cracks, and cracks with an imperfect thermal contact of their faces. The paper considers both finite and infinite solids. In the latter case it is proved, that in contrast with the anisotropic thermoelasticity, the uniform heat flux can produce nonzero stress and electric displacement in the unnotched pyroelectric medium due to the tertiary pyroelectric effect. Obtained boundary integral equations and inclusion models are introduced into the computational algorithm of the boundary element method. The numerical analysis of sample and new problems proved the validity of the developed approach, and allowed to obtain some new results.  相似文献   

16.
This paper presents a novel approach for obtaining boundary integral equations of 2D anisotropic magnetoelectroelasticity. This approach is based on the holomorphy theorems and the Stroh formalism and allows developing of the integral equations for the aperiodic, singly and doubly periodic problems of magnetoelectroelasticity. Obtained equations contain the unknown discontinuities of displacement, electric and magnetic potentials and also traction, electric displacement and magnetic induction that allow adopting the existing boundary element procedures for their solution. Analytical solutions for systems of collinear permeable or impermeable cracks are obtained. Numerical boundary element solutions are obtained for the singly and doubly periodic sets of permeable and impermeable cracks in the magnetoelectroelastic medium and a half-plane. Comparison with analytical solutions and other available results validate the present formulations and numerical computation.  相似文献   

17.
The accuracy of the dual reciprocity boundary element method for two-dimensional elastodynamic interior problems is investigated. A general analytical method is described for the closed form determination of the displacement and traction tensor corresponding to radial basis functions and explicit expressions of these tensors are provided for a number of specific basis functions. For all these basis functions the accuracy of the dual reciprocity boundary element method is numerically assessed for three interior plane stress elastodynamic problems. The influence of internal points on the accuracy of the solution is also considered. Useful results concerning the suitability of the various basis functions for solving plane elastodynamic problems are obtained.  相似文献   

18.
The main objective of this paper is to study the transient magneto-thermo-visco-elastic stresses in a non-homogeneous anisotropic solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about it with a constant angular velocity. The system of fundamental equations is solved by means of a dual-reciprocity boundary element method (DRBEM). In the case of plane deformation, a numerical scheme for the implementation of the method is presented and the numerical computations are carried out for the temperature, displacement components and thermal stress components. The validity of DRBEM is examined by considering a magneto-thermo-visco-elastic solid occupies a rectangular region and good agreement is obtained with the results obtained by other methods. The results obtained are presented graphically to show the effect of inhomogeneity on the displacement components and thermal stress components.  相似文献   

19.
This study details the development of boundary integral equations suitable for treating problems involving the scatter of a plane harmonic wave by an inclusion embedded in an infinite poroelastic medium. The pore pressure-solid displacement form of the harmonic equations of motion are developed from the form of the equations originally presented by Biot. Fundamental solutions and a generalized reciprocal work relation are developed, and these are used to formulate a solution representation in terms of an integral over the inclusion surface. The corresponding boundary integral equations are developed in a form that is integrable in the usual sense, eliminating the need to evaluate Cauchy principal value integrals. These boundary integral equations are discretized and implemented into a boundary element computer program. The so-called forbidden frequency problem which causes computational difficulties in boundary integral treatments of wave scatter in elastic and acoustic media is shown to be absent in the poroelastic case. Numerical results obtained from the boundary element program are compared with analytical results for some test problems, and the program appears to produce accurate results at moderate frequencies.  相似文献   

20.
基于解析试函数的内参型广义协调膜元   总被引:2,自引:0,他引:2  
利用解析试函数法构造一个内参型四结点八自由度广义协调膜元。根据弹性力学平面问题的控制方程和艾雷应力函数,求出问题完备的基本解析解,然后用其作为试函数并采用广义协调条件来构造单元:ATF-GCQ4X。该单元采用了14个解析试函数构造了应变二次完备的内部场,同时引入6个附加边界位移模式,采用平衡力系为权函数构造相应的广义协调条件。数值算例表明,该类内参型单元能在不提高单元结点自由度的情况下提高单元精度,并显示出良好的收敛特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号