首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional and modified membrane bioreactors (MBRs) are increasingly used in small-scale wastewater treatment. However, their widespread applications are hindered by their relatively high cost and operational complexity. In this study, we investigate a new concept of wastewater treatment using a nonwoven fabric filter bag (NFFB) as the membrane bioreactor. Activated sludge is charged in the nonwoven fabric filter bag and membrane filtration via the fabric is achieved under gravity flow without a suction pump. This study found that the biofilm layer formed inside the NFFB achieved 10 mg/L of suspended solids in the permeate within 20 min of initial operation. The dynamic biofilter layer showed good filterability and the specific membrane resistance consisted of 0.3-1.9 × 1012 m/kg. Due to the low F/M ratio (0.04-0.10 kg BOD5/m3/d) and the resultant low sludge yield, the reactor was operated without forming excess sludge. Although the reactor provided aerobic conditions, denitrification occurred in the biofilm layer to recover the alkalinity, thereby eliminating the need to supplement the alkalinity. This study indicates that the NFFB system provides a high potential of effective wastewater treatment with simple operation at reduced cost, and hence offer an attractive solution for widespread use in rural and sparsely populated areas.  相似文献   

2.
The mineral-based sorbents Filtra P, Polonite, natural wollastonite and water-cooled blast furnace slag (WCBFS) were studied in terms of their PO(4) removal performance. Results from a long-term column experiment showed that both Filtra P and Polonite removed >95% of PO(4) from the applied synthetic solution, and that the used filter materials had accumulated several (1.9-19) g kg(-1)P. Phosphorus was removed also by natural wollastonite and WCBFS, but these materials were less efficient. Batch experiments on the used materials showed that the solubility PO(4) was considerably larger than the one expected for crystalline Ca phosphates such as hydroxyapatite, and results from investigations with attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) on the Filtra P material showed that the formed P phase was not crystalline. These evidence suggest that a soluble amorphous tricalcium phosphate (ATCP) was formed in the mineral-based sorbents; the apparent solubility constant on dissolution was estimated to log K(s)=-27.94 (+/-0.31) at 21 degrees C. However, since only up to 18% of the accumulated PO(4) was readily dissolved in the experiments, it cannot be excluded that part of the phosphorus had crystallized to slightly less soluble phases. In conclusion, Filtra P and Polonite are two promising mineral-based sorbents for phosphorus removal, and at least part of the accumulated phosphorus is present in a soluble form, readily available to plants.  相似文献   

3.
Biological nutrient removal without the addition of chemicals   总被引:2,自引:0,他引:2  
Lower per capita water consumption and higher chemical costs result in the unit costs for the conventional removal of plant nutrients in South Africa being considerably higher than those in the United States. In addition, large areas of South Africa are semi-arid and the reuse of water at least for industrial purposes and for recreation has become essential. This led to a search for less expensive methods for the removal of nutrients from domestic wastewater.  相似文献   

4.
5.
Jeffrey Foley 《Water research》2010,44(3):831-10566
International guidance for estimating emissions of the greenhouse gas, nitrous oxide (N2O), from biological nutrient removal (BNR) wastewater systems is presently inadequate. This study has adopted a rigorous mass balance approach to provide comprehensive N2O emission and formation results from seven full-scale BNR wastewater treatment plants (WWTP). N2O formation was shown to be always positive, yet highly variable across the seven plants. The calculated range of N2O generation was 0.006-0.253 kgN2O-N per kgN denitrified (average: 0.035 ± 0.027). This paper investigated the possible mechanisms of N2O formation, rather than the locality of emissions. Higher N2O generation was shown to generally correspond with higher nitrite concentrations, but with many competing and parallel nitrogen transformation reactions occurring, it was very difficult to clearly identify the predominant mechanism of N2O production. The WWTPs designed and operated for low effluent TN (i.e. <10 mgN L−1) had lower and less variable N2O generation factors than plants that only achieved partial denitrification.  相似文献   

6.
This paper examines the sludge characteristics in a submerged membrane bioreactor (MBR) operated on a high strength wastewater from an alcohol distillery. Two membrane bioreactors, each with a 30 μm mesh filter, were investigated with and without addition of powdered activated carbon (PAC). Experiments were conducted with varying organic loading rates ranging from 3.4 to 6.9 kgCOD m−3 day−1 and the specific oxygen uptake rate (SOUR), sludge volume index (SVI), mixed liquor suspended solids (MLSS), particle size and extracellular polymeric substances (EPS) were monitored over a 180 day period. Respirometric experiments did not show enhancement in microbial activity with PAC supplementation. Addition of PAC decreased the SVI thereby perceptibly improving sludge dewaterability. The sludge particle size, which increased with time, appeared to be independent of PAC addition but was influenced by the aeration intensity. PAC also did not affect the sludge EPS concentration; however, the EPS composition, in terms of protein/carbohydrate (polysaccharide) ratio was altered resulting in a high P/C ratio. FTIR analysis of the sludge samples indicated that the functional groups associated with the sludge polysaccharides appear to be involved in its interaction with PAC.  相似文献   

7.
Human adenoviruses (HAdVs) in wastewater samples taken from four different treatment stages of a full-scale municipal wastewater treatment plant (i.e., incoming raw sewage, primary sedimentation effluent, membrane bioreactor (MBR) influent, and MBR effluent) were quantified by real-time PCR assays to further estimate removal efficiency of the HAdVs. Based on hexon gene sequence comparisons, HAdV species A, C, and F were consistently found in the wastewater samples. In general, all three identified HAdV species were detected in most of the wastewater samples using the real-time PCR assays. Overall HAdV concentrations were rather stable over the entire 8-month study period (January-August, 2008) (approximately 106-107 viral particles/L of wastewater for the raw sewage and primary effluent; 108-109 viral particles/L for the MBR influent; and, 103-104 viral particles/L for the MBR effluent). No significant seasonal differences were noticed for the HAdV abundances. Removal efficiencies of the viral particles in the full-scale MBR process were assessed and showed an average HAdV removal of 5.0 ± 0.6 logs over the study period. The removal efficiencies for F species (average log removal of 6.5 ± 1.3 logs) were typically higher (p-value <0.05) than those of the other two species (average of 4.1 ± 0.9 and 4.6 ± 0.5 logs for species A and C, respectively). These results demonstrate that the full-scale MBR system efficiently removed most HAdV from the wastewater leaving about 103 viral particles/L in the MBR effluent.  相似文献   

8.
Blackburne R  Yuan Z  Keller J 《Water research》2008,42(8-9):2166-2176
Nitrogen removal via nitrite, as opposed to the traditional nitrate, may be beneficial for carbon-limited biological wastewater treatment plants. However, reliable termination of nitrification at nitrite (nitritation) has proved difficult in the treatment of domestic wastewater. In this study, nitritation was attained in a sequencing batch reactor (SBR) with pre-denitrification treating domestic wastewater (total Kjeldahl nitrogen (TKN) concentration of about 43 mg NL(-1)) by aerobic duration control. The aerobic duration control strategy terminates aeration upon completion of ammonium oxidation with accumulated nitrite still remaining. The SBR was purposefully operated such that the influence of other known selection factors for nitritation was absent. The process proved effective in achieving a steady state whereby over 80% nitritation was sustained. Investigation of the cause of nitritation by a calibrated ammonium and nitrite oxidation model showed aerobic duration control as the key factor leading to nitritation.  相似文献   

9.
马华辉  袁林江 《山西建筑》2007,33(28):20-21
结合Dephanox工艺的流程及特点,从基质类型和C/N比及C/P比两方面对Dephanox工艺脱氮除磷效果进行了分析,对Dephanox工艺存在的问题进行了探讨,提出该工艺有待解决的研究课题.  相似文献   

10.
Bulking and foaming are two frequently occurring operational problems in activated sludge wastewater treatment plants, and these problems are mainly associated with excessive growth of filamentous bacteria. In this study, a comprehensive investigation of the identity and population dynamics of filamentous bacteria in 28 Danish municipal treatment plants with nutrient removal has been carried out over three years. Fluorescence in situ hybridization was applied to quantify more than twenty probe-defined populations of filamentous bacteria that in total constituted a large fraction of the entire microbial community, on average 24%. Despite the majority being present within the flocs, they occasionally caused settling problems in most of the plants. A low diversity of probe-defined filamentous bacteria was found in the plants with Microthrix and various species belonging to phylum Chloroflexi (e.g., type 0803 and type 0092) as the most abundant. Few other filamentous probe-defined species were found revealing a large similarity between the filamentous populations in the plants investigated. The composition of filamentous populations was stable in each plant with only minor changes in relative abundances observed during the three-year study period. The relative composition of the different species was unique to each plant giving a characteristic “fingerprint”. Comprehensive statistical analyses of the presence and abundance of the filamentous organisms did not reveal many correlations with a particular plant design or process parameter.  相似文献   

11.
12.
The aim of this study was to investigate the occurrence and fate of colloidal and dissolved organic nitrogen (CON and DON) across biological nutrient removal (BNR) activated sludge bioreactors. Primary and secondary effluent total nitrogen (TN) measurements and component fractionation, CON and DON concentration profiles across BNR bioreactors, and laboratory batch experiments with the process mixed liquor were carried out at several full-scale BNR plants in northern Poland. The organic nitrogen (ON) components were divided into high CON, low CON, and DON based on sequential filtration through 1.2, 0.45 and 0.1 μm pore-size filters. The average influent DON0.1μm (<0.1 μm) concentrations ranged from 1.1 g N/m3 to 3.9 g N/m3 and accounted for only 4-13% of total organic nitrogen. In the effluents, however, this contribution increased to 12-45% (the DON0.1μm concentrations varied in a narrow range of 0.5-1.3 g N/m3). Conversions of ON inside the bioreactors were investigated in more detail in two largest plants, i.e. Gdansk (565,000 PE) and Gdynia (516,000 PE). Inside the two studied bioreactors, the largest reductions of the colloidal fraction were found to occur in the anaerobic and anoxic compartments, whereas an increase of DON0.1μm concentrations was observed under aerobic conditions in the last compartment. Batch experiments with the process mixed liquor confirmed that DON0.1μm was explicitly produced in the aerobic phase and significant amounts of ON were converted in the anoxic phase of the experiments.  相似文献   

13.
The biological nitrogen removal (BNR) process is the most common method for removing low quantities of ammonium from wastewater, but this is not the usual treatment for high-strength ammonium wastewater. The capacity to biologically remove the nitrogen content of a real industrial wastewater with a concentration of 5000 g N-NH(4)(+) L(-1) is demonstrated in this work. The experimental system used is based on a two-sludge system, with a nitrifying activated sludge and a denitrifying activated sludge. This system treated real industrial wastewater for 450 days, and during this period, it showed the capacity for oxidizing all the ammonium at average nitrification rates between 0.11 and 0.18 g N-NH(4)(+)g VSS(-1)d(-1). Two key process parameters were evaluated: the maximum nitrification rate (MNR) and the maximum denitrification rate (MDR). MNR was determined in continuous operation at three different temperatures: 15 degrees C, 20 degrees C and 25 degrees C, obtaining values of 0.10, 0.21 and 0.37 g N-NH(4)(+) g VSS(-1)d(-1), respectively. Complete denitrification was achieved using two different industrial carbon sources, one containing mainly ethanol and the other one methanol. The MDR reached with ethanol (0.64 g N-NO(x)(-) g VSS(-1)d(-1)) was about 6 times higher than the MDR reached with methanol (0.11g N-NO(x)(-)g VSS(-1)d(-1)).  相似文献   

14.
针对含油废水特点,探讨了选择膜生物反应器法处理的可行性,着重介绍了膜生物反应器的发展和应用情况,总结了膜生物反应器在深度处理的优势,并对膜生物反应器法回收含油废水在实际应用中存在的问题进行了分析,提出了其在含油废水处理中的改进建议。  相似文献   

15.
Submerged membrane bioreactors (MBRs) are now widely used for various types of wastewater treatment. One drawback of submerged MBRs is the difficulty in removing nitrogen because intensive aeration is usually carried out in the tank and the MBRs must therefore be operated under aerobic conditions. In this study, the feasibility of treating municipal wastewater by a baffled membrane bioreactor (BMBR), particularly in terms of nitrogen removal, was examined. Simultaneous nitrification/denitrification in a single and small reaction tank was possible by inserting baffles into a normal submerged MBR as long as wastewater was fed in the appropriate way. To examine the applicability of the BMBR, pilot-scale experiments were carried out using real municipal wastewater. Although neither external carbon addition nor mixed liquor circulation was carried out in the operation of the BMBR, average removal rates of total organic carbon (TOC), total phosphorus (T-P) and total nitrogen (T-N) reached 85%, 97% and 77%, respectively, with the hydraulic retention time (HRT) of 4.7h. Permeability of the membrane could be maintained at a high level throughout the operation. It was found that denitrification was the limiting step in removal of nitrogen in the BMBR in this study. Various types of monitoring carried out in the BMBR also demonstrated the possibility of further improvements in its performance.  相似文献   

16.
Occurrence and removal efficiencies of 13 pharmaceuticals and personal care products (PPCPs) as well as BOD5, TSS and NH4+ were evaluated for the first time in thirteen onsite household secondary wastewater treatment systems, including two compact biofilters followed by Filtralite-P filter units, two biological sand filters, five horizontal subsurface flow and four vertical flow constructed wetlands. As expected, all systems removed TSS and BOD5 efficiently (>95% removal). The PPCP removal efficiencies exceeded 80% with the exception of carbamazepine, diclofenac and ketoprofen because of their more recalcitrant characteristics. Despite no statistical differences in the PPCP removal were observed between the different systems evaluated, the vegetated vertical flow constructed wetlands which had unsaturated flow and hence better oxygenation, appeared consistently to perform better in terms of PPCP removal efficiency. The combined effects of vegetation and unsaturated water flow provide a higher tolerance to variations in loading rate and a consistent removal rate.  相似文献   

17.
周楠 《市政技术》2016,(4):111-113,144
地下再生水厂具有占用空间少、噪声污染小、环境污染小、节省土地资源、温度较恒定、美观性好等优点。结合某地下再生水厂工程实例,主要介绍了地下再生水厂MBR生物池工艺设计及除臭通风设计。  相似文献   

18.
This study evaluates the effect of hydraulic loading rate (HLR), aspect ratio, granular medium size and water depth on the removal of selected contaminants during the start up of horizontal subsurface flow reed beds (HFRBs). Experiments were carried out in a pilot-scale HFRB system comprising four pairs of lined beds of almost equal surface area (54-56 m(2) each bed), with the following aspect ratios: 1:1, 1.5:1, 2:1 and 2.5:1. The size of the granular medium of each pair varied from coarse granitic gravel ( D(60) = 10mm, C(u) = 1.6) to small granitic gravel (D(60) = 3.5 mm, C(u) = 1.7). The beds of the pair with longest aspect ratio were made shallower (0.27 m) than the rest (0.5m) The system was sampled weekly from May 2001 to January 2002. The results indicate that HLR and water depth are determining factors in the performance of the HFRBs. Beds with a water depth of 0.27 m removed more COD (70-80%), BOD(5) (70-85%), ammonia (40-50%) and dissolved reactive phosphorus (DRP) (10-22%) than beds with a depth of 0.5m (60-65% for COD, 50-60% for BOD(5), 25-30% for ammonia, and 2-10% for DRP). The higher efficiency observed shallower beds was related to their less reducing conditions (average redox potential (E) ranging from -351 to -338 mV) than beds with a depth of 0.5m (-390 to -358 mV). The difference in E status between two bed types seems to lead to differences in the biochemical processes. In fact, denitrification was estimated to be a significant reaction in shallower beds.  相似文献   

19.
An 8 month experimental study was performed to assess biological treatability characteristics of Hygas coal gasification process pilot plant wastewater comprised of cyclone and quench condensates. The study evaluated treatability characteristics of ammonia stripped and unstripped wastewater at full strength and at 1:1 dilution. It was determined that minimum pre-treatment required for biological oxidation consisted of reducing wastewater alkalinity, and decreasing raw ammonia concentration by dilution or by stripping. Kinetic studies with stripped Hygas wastewater showed the waste could be processed at mean cell residence times varying from 10 to 40 days with hydraulic residence times of 2–3 days; the bacteriological yield coefficient was 0.10 (COD basis), and the decay coefficient was 0.01 day−1. Hygas wastewater seemed to inhibit bacteriological growth because mean cell residence times less than 10 days do not appear feasible and because apparently higher yield coefficients were observed with diluted wastewater. However, this factor should not effect removal efficiencies for organic contaminants at recommended processing conditions.  相似文献   

20.
The primary goal of this research was to determine the potential for denitrification and phosphorus removal of a full-scale sequencing batch reactor (SBR), with and without the use of methanol as an external carbon source. The control SBR, without methanol addition, achieved negligible denitrification. Two denitrification rates were observed in the experimental SBR, with methanol addition, an initial fast rate and a slower second rate. The denitrification rate during the first rate period increased with increasing methanol concentration, until a maximum denitrification rate of approximately 19 mg NOx-N/g MLVSS/day was attained. Following the depletion of the methanol, denitrification reactions probably continued by using the available natural carbon in the influent, resulting in a slower, second denitrification rate. Biological phosphorus uptake and release was significant only in the SBR with methanol addition. Methanol was probably not utilized as the carbon source for the enhanced biological phosphorus removal (EBPR) process. However, methanol addition was critical, since it depleted the available nitrates and thus allowed EBPR to take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号