首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrochemical biosensor for determination of hydrogen peroxide (H2O2) has been developed by the hybrid film of poly(methylene blue) and FAD (PMB/FAD). The PMB/FAD hybrid film was performed in PBS (pH 7) containing methylene blue and FAD by cyclic voltammetry. Repeatedly scanning potential range of −0.6-1.1 V, FAD was immobilized on the electrode surface by electrostatic interaction while methylene blue was electropolymerized on electrode surface. This modified electrode was found surface confined and pH dependence. It showed good electrocatalytic reduction for H2O2, KBrO3, KIO3, and NaClO as well as electrocatalytic oxidation for NADH. At an applied potential of −0.45 V vs. Ag/AgCl, the sensor showed a rapid and linear response to H2O2 over the range from 0.1 μM to 960 μM, with a detection limit of 0.1 μM and a significant sensitivity of 1109 μA mM−1 cm−2 (S/N = 3). It presented excellent stability at room temperature, with a variation of response current less than 5% over 30 days.  相似文献   

2.
Abstract— An organic thin‐film‐transistor (OTFT) backplane has been fabricated by using a solution‐processed organic semiconductor (OSC) and organic insulators. The OSC, a peri‐xanthenoxanthene derivative, provides a mobility of 0.5 cm2/V‐sec. These organic materials enhance the mechanical flexibility of the backplane. The developed backplane successfully drives a 13.3‐in. flexible UXGA electrophoretic display that can operate when bent at a radius of 5 mm.  相似文献   

3.
The present work describes the electrocatalytic behavior of phosphotungstate-doped glutaraldehyde-cross-linked poly-l-lysine (PLL-GA-PW) film electrode towards reduction of hydrogen peroxide (H2O2) in acidic medium. The modified electrode was prepared by means of electrostatically trapping the phosphotungstate anion into the cationic PLL-GA coating on glassy carbon electrode. The PLL-GA-PW film electrode showed excellent electrocatalytic activity towards H2O2 reduction in 0.1 M H2SO4. Under the optimized conditions, the electrochemical sensor exhibited a linear response for H2O2 concentration over the range 2.5 × 10−6 to 6.85 × 10−3 M with a sensitivity of 1.69 μA mM−1. The curvature in the calibration curve at high concentration is explained in terms of Michaelis-Menten (MM) saturation kinetics, and the kinetics parameters calculated by three different methods were compared. The PLL-GA-PW film electrode did not respond to potential interferents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL-GA-PW film electrode allowed selective determination of H2O2. Finally, the proposed electrochemical sensor was successfully applied to determine H2O2 in commercially available antiseptic solution and soft-contact lenses cleaning solution and the method has been validated using independent estimation by classical potassium permanganate titration method. Major advantages of the method are simple electrode fabrication, stability and high selectivity towards hydrogen peroxide.  相似文献   

4.
5.
The structural, optical, and electrical properties of Si‐doped SnO2 (STO) films were investigated in terms of their potential applications for flexible electronic devices. All STO films were amorphous with an optical transmittance of ~90%. The optical band gap was widened as the Si content increased. The Hall mobility and carrier density were improved in the SnO2 with 1 wt% Si film, which was attributed to the formation of donor states. Si (1 wt%) doped SnO2 thin‐film transistor exhibited a good device performance and good stability with a saturation mobility of 6.38 cm2/Vs, a large Ion/Ioff of 1.44 × 107, and a SS value of 0.77 V/decade. The device mobility of a‐STO TFTs at different bending radius maintained still at a high level. These results suggest that a‐STO thin films are promising for fabricating flexible TFTs.  相似文献   

6.
A promising material of poly(lactic-co-glycolic acid) (PLGA) and, room temperature ionic liquid (ILs) (1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) was firstly used as an immobilization matrix to entrap proteins and its bioelectrochemical properties were studied. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the PLGA/ILs composite film on the surface of glass carbon electrode were investigated. UV-vis spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the composite film. The obtained results demonstrated that the Hb molecule in the film kept its native structure and showed its good electrochemical behavior. A pair of well-defined redox peaks of Hb was obtained at the Hb/PLGA/ILs composite film-modified GC electrode through direct electron transfer between the protein and the underlying electrode. The proposed biosensor showed good reproducibility and high sensitivity to H2O2 with the detection limit of 2.37 × 10−7 M (S/N = 3). In the range of 5.0 × 10−6 to 8.05 × 10−3 M, the catalytic reduction current of H2O2 was proportional to its concentration. The apparent Michaelis-Menten constant of Hb in the PLGA/ILs composite film was estimated to be 0.069 mM, showing its high affinity.  相似文献   

7.
Abstract— A high‐performance bottom‐contact organic‐thin‐film transistor (OTFT) array on plastic using a self‐organized process has been developed. The effect of octadecyltrichlorosilane (OTS) treatment on the poly‐4‐vinylphenol (PVP) gate insulator on the performance of OTFT on plastic has been studied. The OTFT without OTS exhibited a field‐effect mobility of 0.1‐cm2/V‐sec on/off current ratio of >107. On the other hand, the OTFT with OTS treatment exhibited a field‐effect mobility of 1.3 cm2/V‐sec and an on/off current ratio of >108. This is mainly due to the enhancement in grain size from less than 10 μm to more than 20 μm.  相似文献   

8.
Pure diamond-like carbon (DLC) thin films and boron-doped DLC thin films have been deposited on silicon substrates using femtosecond pulsed laser. The amorphous carbon materials (DLC), have been deposited at room temperature by ablating graphite targets with an amplified Ti:sapphire laser of 800 nm wavelength and a pulse duration of 150 fs in high vacuum conditions. Doping with boron has been performed by ablating alternatively graphite and boron targets.In this study, the DLC films were used as working electrodes for the electrochemical detection of trace heavy metals namely, Cd2+, Pb2+, Ni2+ and Hg2+, by using square wave anodic stripping voltammetry (SWASV) technique. Four metals were detected at −1.3 V deposition potential, and 90 s deposition time. The DLC films have been characterized by multiwavelength Raman spectrometry and high resolution scanning electron microscopy. The effect of the boron doping on the electrochemical behavior has been shown. The a-C:B 8%/Si3N4 electrode gives the more sensitive detection. The four metals are detected simultaneously with a detection limit of 1 μg/L or 2 μg/L and a dynamic range from 1 or 2 to 25 μg/L for every metal, as presented in third table of this article. The different sensitivities obtained are 6.2, 20.0, 1.2 and 6.6 μA/ppb or μA μg−1 L for Cd2+, Pb2+, Ni2+ and Hg2+, respectively.  相似文献   

9.
SnCl2 (solution) was spin coated on soda lime glass and Al2O3 substrate to obtain nano-particulate tin oxide film, directly by sintering at 550 °C for 40 minutes (min). The surface morphology and crystal structure of the tin oxide films were analyzed using atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of SnO2 nanostructure was determined from UV-vis and found to be ?3 nm. These films were tested for sensing H2 concentration of 0.1-1000 ppm at optimized operating temperature of 265 °C. The results showed that sensitivity (Rair/Rgas per ppm) goes on increasing with decreasing concentration of test gas, giving concentration dependent changes. Special studies carried out at low concentration levels (0.1-1 and 1-10 ppm) of H2, give high sensitivity (200 × 10−3/ppm) for lowest concentration (0.1-1 ppm) of H2. The selectivity for H2 against relative humidity (RH), CO2, CO and LPG gases is also good. The sensor, at operating temperature of 200 °C, is showing nearly zero response to 300 ppm of H2, and offering response to acetone vapour of 11 ppm. Selectivity for acetone against RH% and CO2 was also studied. These sensors can be used as H2 sensor at an operating temperature of 265 °C, and as an acetone sensor at the operating temperature of 200 °C.  相似文献   

10.
A CO2 sensor based upon a continuous-wave thermoelectrically-cooled distributed feedback quantum cascade laser operating between 2305 and 2310 cm−1 and a 54.2 cm long optical cell has been developed. Two approaches for direct absorption spectroscopy have been evaluated and applied for monitoring of the CO2 concentration in gas lines and ambient laboratory air. In the first approach optical transmittance was derived from the single channel laser intensity, whilst in the second approach a ratio of signal and reference laser intensities (balanced detection) was used. The optimum residual absorption standard deviation was estimated to be 1.9 × 10−4 for 100 averages of 1 ms duration and 0.1 cm−1 scans over the P(46) CO2 absorption line of the ν3 vibrational band at 2306.926 cm−1. A CO2 detection limit (1 standard deviation) of 36 ppb was estimated for 0.1 s average and balanced detection.  相似文献   

11.
Direct current sputtering was used for deposition of Si film for precursor film of excimer laser annealing, n+‐Si/p+‐Si film for source/drain contact, and SiO2 film for gate insulator of polycrystalline silicon thin‐film transistor. Using these methods, poly‐Si thin‐film complementary metal oxide semiconductor inverter was fabricated by all sputtering process for the first time. The field‐effect mobility was, respectively, 6.5 and 12.5 cm2/Vs for n‐TFTs and p‐TFTs. This inverter exhibits a full rail‐to‐rail swing and abrupt voltage transfer characteristics over the entire voltage range, and the output voltage gain was ~117 at Vdd = 20 V.  相似文献   

12.
Semiconducting SnO2 thin films having higher value of electrical conductivity have been deposited using RF sputtering technique in the reactive gas environment (30% O2 + 70% Ar) using a metallic tin (Sn) target for detection of oxidizing NO2 gas. The effect of growth pressure (12-18 mTorr) on the surface morphology and structural property of SnO2 film was studied using Atomic force microscopy (AFM), Scanning electron microscopy (SEM) and X-ray Diffraction (XRD) respectively. Film deposited at 16 mTorr sputtering pressure was porous with rough microstructure and exhibits high sensor response (∼2.9 × 104) towards 50 ppm NO2 gas at a comparatively low operating temperature (∼100 °C). The sensor response was found to increase linearly from 1.31 × 102 to 2.9 × 104 while the response time decrease from 12.4 to 1.6 min with increase in the concentration of NO2 gas from 1 to 50 ppm. The reaction kinetics of target NO2 gas on the surface of SnO2 thin film at the Sn sites play important role in enhancing the response characteristics at lower operating temperature (∼100 °C). The results obtained in the present study are encouraging for realization of SnO2 thin film based sensor for efficient detection of NO2 gas with low power consumption.  相似文献   

13.
The direct electrochemistry of house fly cytochrome P4506A1 (CYP6A1) confined in dioctadecyl dimethyl ammonium bromide (DDAB) film was achieved. The immobilized CYP6A1 displayed a pair of redox peaks with a formal potential of −0.36 mV in pH 7.0 O2-free phosphate buffers at scan rate of 1 V s−1 and the direct electron transfer of CYP6A1 was characterized by voltammetry. The CYP6A1 in the DDAB film retained its bioactivity and could catalyze the reduction of dissolved oxygen. Upon addition of its substrate aldrin or heptachlor to the air-saturated solution, the reduction peak current of dissolved oxygen increased, which indicates the catalytic behavior of CYP6A1 to its substrates. By amperometry a calibration linear range was obtained to be 9.08 × 10−6-4.54 × 10−5 mol L−1 with a sensitivity of 80 μA mM−1 for aldrin or 8.91 × 10−6-4.46 × 10−5 mol L−1 with a sensitivity of 66 μA mM−1 for heptachlor. The apparent Michaelis-Menten constant for the electrocatalytic activity of CYP6A1 was found to be 7.468 × 10−5 mol L−1 for aldrin and 4.316 × 10−5 mol L−1 for heptachlor. The bioelectrocatalytic products were analysed using gas chromatography (GC) and electron ionization-mass spectrometry (EI-MS). The results confirmed that epoxidation was the main pathways of CYP6A1-mediated organochlorine pesticides oxidation.  相似文献   

14.
Multi-walled carbon nanotubes (MWCNTs) are successfully processed in the form of thin films (buckypapers), and their morphology and electrical behaviour are characterized. The MWCNTs are synthesized by the floating catalyst chemical vapour deposition process. The effects of a sequence of treatments applied for MWCNTs purification on the buckypapers electrical behaviour are also examined. Nanocomposite thin films constituted of pristine and purified MWCNTs and Pd nanoparticles are prepared in order to evaluate their viability as H2 sensors at room temperature. For this purpose, the electrical resistance of the nanocomposite films in atmospheres with different H2 concentrations, is determined. Scanning electron microscopy (SEM) images show that the buckypapers and the nanocomposite films are 2D structures constituted by randomly oriented MWCNTs. The buckypapers present a semiconductor-like electrical behaviour as determined by the standard four point method. Room temperature resistivity values of around 10−3 Ω m are assessed. Nanocomposite films show different electrical behaviour depending on the purification treatment applied to the MWCNTs employed. Furthermore, the electrical resistance of the nanocomposite films is found to increase when the measurements are performed in H2 atmosphere. Values of H2 sensitivity at room temperature of the nanocomposite films up to 2.15% are determined for H2 average concentration higher than 350 ppm with short recovery time.  相似文献   

15.
In this paper, power ultrasound technology (PUT) is employed to prepare the high-k hafnium-aluminum oxide (HAO) dielectric and thin film transistor (TFT). The continuous propagation of high-intensity ultrasonic waves in the metal oxide precursor solution can improve the dissolution efficiency of the solute and speed up the formation of the HAO precursor solution. The prepared HAO films have a smooth surface roughness of 0.36 nm and high optical transmittance of 85 %. Moreover, HAO films obtain excellent electrical properties with a relative permittivity of 15.9 and a leakage current density of 9.1 × 10−8 A/cm2 at 2 MV/cm as well. Finally, we successfully fabricate TFT with HAO dielectric using PUT, these TFTs exhibit switch characteristics with field effect mobility of 18.7 cm2v−1s−1, threshold voltage (Vth) of −0.47 V, and Vth shift of 0.35 V under positive gate bias stress. The results show that the PUT is a promising method that can remarkably decrease the preparation time of the precursor solution and improve the TFT performance.  相似文献   

16.
A series of new molecular semiconductor-doped insulator (MSDI) heterojunctions as conductimetric transducers to NH3 sensing were fabricated based on a novel semiconducting molecular material, an amphiphilic tris(phthalocyaninato) rare earth triple-decker complex, Eu2[Pc(15C5)4]2[Pc(OC10H21)8], quasi-Langmuir-Shäfer (QLS) film, as a top-layer, and vacuum-deposited and cast film of CuPc as well as copper tetra-tert-butyl phthalocyanine (CuTTBPc) QLS film as a sub-layer, named as MSDIs 1, 2 and 3, respectively. MSDIs 1-3 and respective sub-layers prepared from three different methods were characterized by X-ray diffraction, electronic absorption spectra and current-voltage (I-V) measurements. Depending on the sub-layer film-forming method used, α-phase CuPc film structure, β-phase CuPc crystallites and H-type aggregates of CuTTBPc have been obtained, respectively. An increasing sensitivity to NH3 at varied concentrations in the range of 15-800 ppm, follows the order MSDI 2 < MSDI 3 < MSDI 1, revealing the effect of sub-layer film structures on sensing performance of the MSDIs. In particular, the time-dependent current plot of the MSDI 1, with α-phase CuPc film as a sub-layer, clearly shows an excellent separation of the different ammonia concentration levels and nearly complete reversibility and reproducibility even at room temperature, which is unique among the phthalocyanine-based ammonia sensors thus far reported in the literature. This provides a general method to improve sensor response of organic heterojunctions by controlling and tuning the film structure of sub-layer with appropriate fabrication techniques. On the other hand, the enhanced sensitivity, stability and reproducible response of the MSDI 1 heterostructure in comparison with the respective single-layer films have also been obtained. A judicious combination of materials and molecular architectures has led to enhanced sensing properties of the MSDI 1, in which control at the molecular level can be achieved.  相似文献   

17.
Measurement of the transverse piezoelectric coefficient (e31,f) in thin films is crucial for the development of microfabricated sensors, actuators, and transducers. Here, a method is described such that lithographically defined strain gauges enable non-destructive, position-dependent characterization of e31,f in conjunction with the wafer flexure technique. Measurements of 100 nm thick Pt gauges deposited on 1 μm thick PbZr0.52Ti0.48O3 thin films yield gauge factors of 6.24, with a gauge-to-gauge variation that is 5% of this value. The system allows for simultaneous measurement of the charge and strain, improving the overall accuracy of measurement. The small footprint of the combined strain gauge array/electrode pattern used for determining e31,f, allows for a non-destructive mapping of the transverse piezoelectric coefficient across large-area wafers. Due to the clamping configuration used in wafer flexure experiments, e31,f values can accurately be obtained within the central ∼2/3 of a full wafer. Measurements performed on a 1.3 μm thick randomly oriented polycrystalline PbZr0.52Ti0.48O3 film made deposited on a 4 in. platinized silicon wafer by the sol-gel process show a high degree of uniformity, with e31,f of −6.37 ± 0.60 C/m2 for points measured within r = 3 cm.  相似文献   

18.
In this paper, a stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene) (PEDOT)-single walled carbon nanotubes (SWCNT)/ascorbate oxidase (AO)/Nafion films for detection of l-ascorbic acid (AA) was successfully developed. PEDOT-SWCNT nanocomposite and Nafion films were used as inner and outer films, respectively. AO was immobilized between these two films. The PEDOT-SWCNT nanocomposite films were characterized by electrochemical impedance spectroscopy and scanning electron microscopy. The influence of detection potential and temperature on the biosensor performance was examined in detail. Despite the multilayer configuration, the biosensor exhibited a relatively fast response (less than 10 s) and a linear range from 1 μM to 18 mM (a correlation coefficient of 0.9974). The sensitivity of the biosensor was found to be 28.5 mA M−1 cm−2. Its experimental detection limit was 0.7 μM (S/N = 3) and the apparent Michaelis-Menten constant (Km) was calculated to be 18.35 mM. Moreover, the biosensor exhibited good anti-interferent ability and excellent long-term stability. All the results showed that such sandwich-type PEDOT-SWCNT/AO/Nafion films could provide a promising platform for the biosensor designs for AA detection.  相似文献   

19.
Process development of inverted‐staggered amorphous InGaZnO thin‐film transistors (a‐IGZO TFTs) with wet‐etched electrodes was employed in this paper. Five metals (Al, Cu, Ti, Ta, and Cr) as well as various etchants were comparatively investigated, indicating H2O2 based solution etched Ta films were good candidates for the wet‐etched electrodes of a‐IGZO TFTs. The aforementioned findings along with other improving attempts successfully established inexpensive processing steps and conditions with which stable a‐IGZO TFTs were finally fabricated. The device performance was reasonably good enough (μFE of 6.0 cm2/V·s, Vth of 2.5 V, SS of 1.8 V/decade, and Ion/Ioff of 106) to meet the requirements of applications especially for small‐sized flat panel displays.  相似文献   

20.
Abstract— A flexible color LCD panel driven by organic TFTs (OTFTs) was successfully demonstrated. A pentacene OTFT with an anodized Ta2O5 gate insulator, which can be operated at low voltage, was developed. In order to improve the electrical performance of the OTFT, the gate insulator was surface treated by processes such as O2 plasma, UV light irradiation, and hexamethyldisilane treatments. The fabricated OTFT exhibited a mobility of 0.3 cm2/V‐sec and a current on/off ratio of 107 with a low operating drain voltage of ?5 V. A fast‐response‐time flexible ferroelectric LCD, which contains polymer networks and walls, was integrated with the OTFTs by using a lamination and a printing technique. As a result, color images were achieved on the fabricated panel by using a field‐sequential‐color method at a low driving voltage of less than 15 Vpp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号