首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trans Lipids: The Egg Yolk Lipids of the Hen The feeding of hens with a trans-containing edible fat resulted in an increase in the trans fatty acids of the egg yolk lipids to the extent of 10%, which completely disappeared within 14 days after stopping the trans-containing feed. The fatty acids in the triglyceride fractions contained in each case more trans unsaturated fatty acids than those in the corresponding phosphatide fractions. The gas chromatographic analysis of the fatty acid methyl esters showed that the triglycerides contained more oleic acid than the phosphatide fatty acids whereas stearic as well as polyunsaturated components were concentrated predominently in the phosphatides. The analysis of the fatty acid methyl esters from triglyceride and phosphatide fractions after feeding of trans-containing fat showed distinct changes in both the groups, thus for example a reduction of oleic acid in the neutral fat analogous to that in the total lipids as against its increase in phosphatides. The amount of linoleic acid in the phosphatide fatty acids increased while it remained constant in triglyceride fatty acids.  相似文献   

2.
The purpose of the present study was to investigate molecular compositions of lipid droplets changing in live hepatic cells stimulated with major fatty acids in the human body, i.e., palmitic, stearic, oleic, and linoleic acids. HepG2 cells were used as the model hepatic cells. Morphological changes of lipid droplets were observed by optical microscopy and transmission electron microscopy (TEM) during co-cultivation with fatty acids up to 5 days. The compositional changes in the fatty chains included in the lipid droplets were analyzed via Raman spectroscopy and chemometrics. The growth curves of the cells indicated that palmitic, stearic, and linoleic acids induced cell death in HepG2 cells, but oleic acid did not. Microscopic observations suggested that the rates of fat accumulation were high for oleic and linoleic acids, but low for palmitic and stearic acids. Raman analysis indicated that linoleic fatty chains taken into the cells are modified into oleic fatty chains. These results suggest that the signaling pathway of cell death is independent of fat stimulations. Moreover, these results suggest that hepatic cells have a high affinity for linoleic acid, but linoleic acid induces cell death in these cells. This may be one of the causes of inflammation in nonalcoholic fatty liver disease (NAFLD).  相似文献   

3.
J. K. G. Kramer 《Lipids》1980,15(9):651-660
Male Sprague-Dawley rats were fed diets for 1 or 16 weeks, containing 20% by weight vegetable oils differing widely in their oleic, linoleic and linolenic acid content. No significant changes were observed in the level of the cardiac lipid classes. The fatty acid composition of the 2 major phospholipids, phosphatidylcholine and phosphatidylethanolamine, showed a remarkable similarity between diets in the concentration of total saturated, C22 polyunsaturated and arachidonic acids. Monounsaturated acids were incorporated depending on their dietary concentration, but the increases were moderate. Dietary linolenic acid rapidly substituted C22 polyunsaturated fatty acids of the linoleic acid family (n−6) with those from the linolenic acid family (n−3). The results suggest that dietary linolenic acid of less than 15% does not inhibit the conversion of linoleic to arachidonic acid but the subsequent conversion of arachidonic acid to the C22 polyunsaturates was greatly reduced. Significant amounts of dietary monounsaturated fatty acids were incorporated into cardiac cardiolipin accompanied by increases in polyunsaturated fatty acids, apparently to maintain an average of 2 double bonds/molecule. The cardiac sphingomyelins also accumulated monounsaturated fatty acids depending on the dietary concentration. It is quite evident from the results of this study that the incorporation of oleic acid and the substitution of linolenic for linoleic acid-derived C22 polyunsaturated fatty acids into cardiac phospholipids was related to the dietary concentration of these fatty acids and was not peculiar to any specific oil. Even though it is impossible to estimate the effect of such changes in cardiac phospholipids on membrane structure and function, results are discussed which suggest that the resultant membrane in the Sprague-Dawley male rat is more fragile, leading to greater cellular breakdown and focal necrosis. Contribution No. 914 from the Animal Research Institute.  相似文献   

4.
Hutchins RF  Martin MM 《Lipids》1968,3(3):247-249
The lipids of the common house cricket,Acheta domesticus L., have been examined with the following results. The fatty acids associated with the lipid extracts do not change significantly from the third through the eleventh week of the crickets' postembryonic life. The major fatty acids are linoleic (30–40%), oleic (23–27%), palmitic (24–30%), and stearic acids (7–11%). There are smaller amounts of palmitoleic (3–4%), myristic (∼1%), and linolenic acids (<1%). The fatty acid composition of the cricket lipids reflects but is not identical to the fatty acids of the dietary lipids: linoleic (53%), oleic (24%), palmitic (15%), stearic (3%), myristic (2%), and linolenic acid (2%). The amount of triglycerides present in the crickets increases steadily from the second through the seventh or eighth week of postembryonic life, then drops sharply. Other lipid classes, such as hydrocarbons, simple esters, diglycerides, monoglycerides, sterols, and free fatty acids remain about constant. The composition of the fatty acids associated with the tri-, di-, and monoglycerides and the free fatty acid fraction are all about the same. The fatty acids associated with the simple esters are high in stearic acid. Postdoctoral Research Associate, Department of Chemistry, University of Michigan, 1965–1967.  相似文献   

5.
Summary Conidia-free mycelia ofNeurospora crassa converted C14-acetate into neutral lipid more efficiently than C14-labelled mevalonic acid or six other compounds tested. Pyruvate, glucose, and alanine contributed little to the neutral lipid fraction, but that contribution was mainly as fatty acids. Substantial losses of C14 as carbon dioxide indicated that all of the labelled compounds participated in cell metabolism. Analysis of the fatty acids esterified to the neutral lipid of unlabelled mycelia showed that palmitic, oleic, and linoleic acids each comprised nearly one-third of the total while stearic, palmitoleic, and a small amount of unidentified acids contributed the remainder. Journal Paper No. 1557 of the Purdue Agricultural Experiment Station, Lafayette, Ind.  相似文献   

6.
Andrew C. Peng 《Lipids》1974,9(5):299-301
Cabbage leaves contain 0.16% total lipids of which 51.02% are neutral lipids, 40.78% glycolipids, and 8.18% phospholipids. The predominant fatty acids in the total lipid analysis are linolenic, linoleic, oleic, palmitic, and stearic acids. Linolenic, palmitic, tridecanoic, and oleic are the principal components in the neutral lipid fraction while glycolipids are composed mainly of linolenic, palmitic, lauric, myristic, and tricosanoic acids. Phospholipids are high in palmitic, linolenic, and linoleic acids. Both glucose and galactose were observed in the glycolipid fraction.  相似文献   

7.
Kim HK  Choi H 《Lipids》2001,36(12):1331-1336
This study was designed to examine the effects of dietary n−3 and n−6 polyunsaturated fatty acids (PUFA) on postprandial lipid levels and fatty acid composition of hepatic membranes. Male Sprague-Dawley rats were trained for a 3−h feeding protocol and fed one of five semipurified diets: one fat-free diet or one of four diets supplemented with 10% (by weight) each of corn oil, beef tallow, perilla oil, and fish oil. Two separate experiments were performed, 4-wk long-term and 4-d short-term feeding models, to compare the effects of feeding periods. Postprandial plasma lipid was affected by dietary fats. Triacylglycerol (TG) and total cholesterol levels were decreased in rats fed perilla oil and fish oil diets compared with corn oil and beef tallow diets. Hepatic TG and total cholesterol levels were also reduced by fish oil and perilla oil diets. Fatty acid composition of hepatic microsomal fraction reflected dietary fatty acids and their metabolic conversion. The major fatty acids of rats fed the beef tallow diet were palmitic, stearic, and oleic. Similarly, linoleic acid (LA) and arachidonic acid in the corn oil group, α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) in the perilla oil group, and palmitic acid and docosahexaenoic acid (DHA) in the fish oil group were detected in high proportions. Both long- and short-term feeding experiments showed similar results. In addition, microsomal DHA content was negatively correlated with plasma lipid levels. Hepatic lipid levels were also negatively correlated with EPA and DHA contents. These results suggest that n−3 ALA has more of a hypolipidemic effect than n−6 LA and that the hypolipidemic effect of n−3 PUFA may be partly related to the increase of EPA and DHA in hepatic membrane.  相似文献   

8.
J. A. Milner  E. G. Perkins 《Lipids》1978,13(8):563-565
Arginine deficiency is associated with a marked increase in liver lipids in the rat. Triglyceride accumulation accounts for most of the fatty infiltration. Cholesterol concentration per gram of liver increased approximately 280% above control rats receiving dietary arginine. The percentage of phospholipids was significantly decreased in the arginine-deficient rat liver compared to controls. The fatty acid composition revealed a significant reduction in the percentage of palmitic, palmitoleic, oleic, and linoleic acids. However, both stearic and arachidonic acids were increased approximately 250 and 160%, respectively, in arginine-deficient livers compared to controls. Arginine deficiency in the rat causes a marked alteration in lipid metabolism similar to that observed with orotic acid feeding. The similarities of arginine deficiency and orotic acid feeding are discussed.  相似文献   

9.
C. H. Tsai  J. E. Kinsella 《Lipids》1982,17(12):848-852
Suspension cell cultures of cocoa bean rapidly incorporated palmitic, stearic, oleic and linoleic acids into cellular lipids. Thus, 75 and 20% of [1-14C] palmitic acid was incorporated into polar lipids and triglycerides, respectively, after 48 hr. When [1-14C] oleic and [1-14C] linoleic acid were added separately, polar lipids consistently contained most of the radioactive fatty acids. Ca. 60% of the stearic acid accumulated as unesterified fatty acid in the cells. Palmitic and stearic acid were not desaturated, but oleic acid and linoleic acid were further desaturated. The kinetics of conversion of oleic acid and linoleic acid suggested a sequential desaturation pathway of 18∶1→18∶2→18∶3 in cocoa bean cell suspensions.  相似文献   

10.
The weight loss supplement conjugated linoleic acid (CLA) consists of an equal mixture of trans-10,cis-12 (10,12) and cis-9,trans-11 (9,11) isomers. However, high levels of mixed CLA isomers, or the 10,12 isomer, causes chronic inflammation, lipodystrophy, or insulin resistance. We previously demonstrated that 10,12 CLA decreases de novo lipid synthesis along with the abundance and activity of stearoyl-CoA desaturase (SCD)-1, a δ-9 desaturase essential for the synthesis of monounsaturated fatty acids (MUFA). Thus, we hypothesized that the 10,12 CLA-mediated decrease in SCD-1, with the subsequent decrease in MUFA, was responsible for the observed effects. To test this hypothesis, 10,12 CLA-treated human adipocytes were supplemented with oleic acid for 12?h to 7?days, and inflammatory gene expression, insulin-stimulated glucose uptake, and lipid content were measured. Oleic acid reduced inflammatory gene expression in a dose-dependent manner, and restored the lipid content of 10,12 CLA-treated adipocytes without improving insulin-stimulated glucose uptake. In contrast, supplementation with stearic acid, a substrate for SCD-1, or 9,11 CLA did not prevent inflammatory gene expression by 10,12 CLA. Notably, 10,12 CLA impacted the expression of several G-protein coupled receptors that was attenuated by oleic acid. Collectively, these data show that oleic acid attenuates 10,12 CLA-induced inflammatory gene expression and lipid content, possibly by alleviating cell stress caused by the inhibition of MUFA needed for phospholipid and neutral lipid synthesis.  相似文献   

11.
High concentrations of polyunsaturated fatty acids (PUFA) in meat have detrimental effects on its technical properties. The present study was carried out to investigate whether PUFA levels in pork can be reduced by increasing the concentrations of oleic acid in pig diets. To this end a bifactorial experiment was carried out with 48 female growing finishing pigs. Six different diets were used with two different concentrations of linoleic acid (12 vs. 24 g/kg) and three different concentrations of oleic acid (12 vs. 18 vs. 24 g/kg). The experiment started at a body weight (BW) of 58 kg and continued until 115 kg BW. The fatty acid composition of total lipids of backfat, perirenal fat and musculus (m.) longissimus dorsi was analysed. Concentrations of linoleic acid and total PUFA in backfat and perirenal fat were affected only by the dietary linoleic acid content but not at all by the dietary oleic acid content. Increasing the dietary concentration of oleic acid raised the level of oleic acid in those tissues at the expense of saturated fatty acids, suggesting competition between monounsaturated fatty acids and saturated fatty acids for incorporation into triglycerides. At the low dietary linoleic acid concentration, the percentages of linoleic acid and total PUFA in total lipids of m. longissimus dorsi were also unaffected by the dietary oleic acid content. In contrast, at the high dietary linoleic acid concentration, percentages of linoleic acid and total PUFA of the m. longissimus dorsi were reduced by increasing the dietary concentration of oleic acid, suggesting that oleic acid and linoleic acid compete for incorporation into muscle lipids. Thus, at high dietary linoleic acid levels the fatty acid composition of the m. longissimus dorsi was favourably affected by high dietary oleic acid concentrations; in backfat and perirenal fat, however, no beneficial effect of high dietary oleic acid levels was seen.  相似文献   

12.
Uptake and incorporation of long-chain fatty acids were studied in a human colorectal cancer cell line (HT29/219) grown in culture medium supplemented with either fetal calf serum (FSC) or horse serum (HS). The cells were grown for 120 h with no change of medium; the two major cellular lipid classes, the phospholipids and the triacylglycerols, were analyzed at regular time-points. We observed significant changes in the concentration of most fatty acids throughout culture, and differences in their composition when different sera were used to supplement the medium. Minimal levels of free fatty acids were found in the cells, indicating a very small “free fatty acid pool”. A major difference between the cells grown in media supplemented with different sera was the changes observed in concentrations of cellular polyunsaturated fatty acids during growth. In cells grown with FCS (in which 20∶4n−6 is present), the levels of this acid in the phsopholipid and triacylglycerol fractions declined rapidly during cell growth, suggesting further metabolism. In cells grown in medium supplemented with HS, 18∶2n−6 was the major polyunsaturated acid present. There was clear evidence that this acid accumulated in the cellular triacylglycerol and phospholipid fractions. Furthermore, its concentration did not decline during growth in culture, suggesting minimal conversion to other polyunsaturated n−6 acids. Our results suggest that fatty acids from additional sources in the medium, for example triacylglycerols and phospholipids associated with the lipoproteins, are taken up by the cells. There is also indication of cellular fatty acid synthesis, particularly of monounsaturated and saturated acids during the culture period. HT29/219 cells were shown to take up and incorporate radioactivity when trace amounts of [1-14C]-labeled arachidonic, linoleic or oleic acids were added to the culture medium. Most (80%) of the label was detected in cellular phospholipids and triacylglycerols, although the specific activities of these various fatty acids were different in the two lipid fractions.  相似文献   

13.
R. K. Tume  R. P. Newbold 《Lipids》1973,8(8):441-442
The fatty acid composition of the phospholipids of sarcoplasmic reticulum preparations from rabbit psoas (white) and soleus (red) muscles was determined. The sarcoplasmic reticulum from psoas muscle was lower in stearic and oleic acids and higher in palmitic and linoleic acids than that from soleus muscle, and contained a greater proportion of polyunsaturated fatty acids. However most of the differences in fatty acids were small.  相似文献   

14.
A. C. Joshi  V. M. Doctor 《Lipids》1975,10(3):191-193
Gas chromatographic determination of the fatty acids in the seeds of cottonseed (Gossypium sp.) showed linoleic, palmitic, oleic, and stearic acids, with linoleic acid being the major component. Changes in the composition of fatty acids during various stages of germination were measured in the cotyledons and in the roots. A decrease in the content of all the fatty acids and an 8-fold increase in the moisture content of the cotyledons were observed during the 10 days of germination. There were no significant changes in the fatty acid contents of the roots with the exception of those in linoleic acid which increased by 50% during 4–10 days of germination. The possible significance of these changes is discussed.  相似文献   

15.
Behaviour of Free Fatty Acids After Burning in Animal Experiments The pattern of free fatty acids in the serum of rats after 20% burning was determined in order to elucidate the severe changes resulting from the shock after burning. Gas chromatographic analysis was carried out after 1/2, 1, 6, 24, 48 and 72 hours following burning trauma. For comparison the fatty acid pattern of a control group of unburned animals was examined. Gas chromatographic analysis showed following characteristic changes: 1. An increase of palmitic, stearic, palmitoleic, oleic, linoleic and linolenic acids after 6 hours following burning. 2. A constant level of palmitic acid even after 72 hours. 3. A slight decline of palmitoleic and oleic acids after 48 and 72 hours. 4. An increase of the polyunsaturated linoleic and linolenic acids till 24 hours after burning and a subsequent large decrease. The function of fatty acids, especially linoleic and linolenic acids, as constituents of membranes is of great importance. They determine essentially the membrane permeability. Moreover, the polyunsaturated fatty acids are precursors of prostaglandins, whose role in burning is little investigated. The characteristic change of polyunsaturated fatty acids suggests a relationship with membrane damage, increased thrombocyte aggregation and alterations of lung surfactant. Their steep decline might be caused by autoxidation due to lack of antioxidants, degradation during conversion to energy and incorporation into lipoproteins and membranes. The significance of free fatty acids in catabolism of the cell in severe trauma is unquestionable.  相似文献   

16.
G. J. Hopkins  C. E. West 《Lipids》1977,12(4):327-334
Hepatocyte plasma membranes were isolated from the livers of mice fed either a low fat diet or high fat diets containing polyunsaturated or saturated fat. The combined rate and isopycnic ultracentrifugation technique which was used produced highly purified hepatocyte plasma membrane fractions. The efficacy of the procedure was checked by electron microscopy and the assay of marker enzymes for the different subcellular organelles. Mice were maintained on a low fat diet until 60–70 days of age, when they were fed high fat diets containing polyunsaturated or saturated fat. The hepatocyte plasma membrane lipids of mice fed the polyunsaturated fat diet for 4 wk contained increased proportions of the major dietary unsaturated fatty acid, linoleic acid, and increased proportions of arachidonic acid. The proportion of linoleic and arachidonic acids decreased with continued feeding of the polyunsaturated fat diet. The hepatocyte plasma membrane lipids of mice fed the saturated fat diet contained increased proportions of oleic acid.  相似文献   

17.
The effect of ethionine on the conversion of stearic acid to oleic acid was studied. Rats were fed essential fatty acid (EFA) deficient diet for three weeks, after which time half the animals were fed 0.25% DL-ethionine for nine additional days. Seventeen hours prior to killing, they were fed a slurry of the diet containing 18-14C-stearic acid. Liver triglycerides and phospholipids were extracted and separated and their fatty acid composition and the distribution of radioactivity between stearic and oleic acid was determined. In the tissues studied, oleic acid was maintained at control levels in ethionine-fed rats, but eicosatrienoic acid was significantly depressed. Distribution of radioactivity and specific activity of oleic acid in the triglycerides and phospholipids were significantly reduced by the analogue. In vitro studies of desaturation and chain elongation reactions, with liver microsomes, using 18-14C-stearic and 1-14C-linoleic acids as substrates, showed that ethionine depressed the synthesis of oleic acid from stearic and γ-linolenic from linoleic acid. Elongation of linoleic adie to a 20∶2 fatty acid was unaffected by ethionine. Therefore, the results showed that ethionine inhibited desaturation of stearic to oleic acid in vivo and in vitro and probably also impaired the desaturation of oleic to octadeca-6, 9-dienoic acid. Maintenance of control levels of oleic acid in the tissues of ethionine-fed, EFA deficient rats suggested the presence of synthetic pathways for oleic acid other than via desaturation of stearic acid. Presented in part at the AOCS Meeting, San Francisco, April 1969.  相似文献   

18.
The purpose of the study was to assess changes in the fatty acid composition of raw and grilled pig muscles after different storage periods. A total of 13 female and 12 castrated Pietrain×German Landrace pigs were fed a basal concentrate diet supplemented with 5% olive oil or 5% linseed oil during the growing‐finishing period. An entire cut of the pork loin with bone (15th rib to 5th lumbar vertebra) was stored at 5 °C for 48, 96 or 144 h. Simultaneous analyses of intramuscular fat and lipid composition were carried out on raw and grilled longissimus muscles following different storage intervals. Dietary inclusion of linolenic acid by linseed oil feeding effectively increased the long‐chain n‐3 fatty acids, whereas in the olive oil group the oleic acid in pork was higher. Mean total lipid ranged from 1.8 to 2.3% for raw and from 2.6 to 3.5% for grilled pork chops. The relative proportions of lauric acid, stearic acid and oleic acid significantly increased with storage time, while the percentages of linoleic, arachidonic, eicosapentaenoic acid and the sum of polyunsaturated fatty acids, especially n‐6 fatty acids, were decreased. Compared with raw muscle, grilling affected the relative fatty acid profile only slightly. Related to the original weight, storage and grilling increased the total fatty acid contents and the sum of saturated, monounsaturated, n‐6 and n‐3 fatty acids of loin chops, as a result of water losses.  相似文献   

19.
Twelve-week-old Landes male geese were overfed with corn for 21 d in order to induce liver steatosis (fatty liver). Lipid composition of hepatocyte plasma membranes from fatty livers was compared to that of lean livers obtained from geese fed a normal diet. The ratio cholesterol/phospholipids was higher in fatty hepatocyte plasma membranes (0.63 vs. 0.47), whereas the phospholipid/protein ratio was less than half. Overfeeding induced changes in fatty acid composition of hepatocyte plasma membranes, including a greater than twofold increase in the percentage of oleic acid (29.7 vs. 13.8%) and a somewhat lesser increase in lauric, palmitic, and palmitoleic acid contents of plasma membrane lipids of fatty livers. A concomitant reduction in the proportion of stearic acid (18.4 vs. 25.1%) was also observed. In fatty livers, the increased ratio of saturated to polyunsaturated fatty acids (PUFA) (1.5 vs. 1.0) was related to a significant decrease in PUFA content. Among all the PUFA, only the eicosatrienoic acid (20∶3n−9) percentage was increased by liver steatosis. Overfeeding with corn appeared to induce competition between de novo synthesized and dietary fatty acids incorporated in hepatocyte plasma membranes. This resulted in an accumulation of de novo synthesized monounsaturated and derived fatty acids in plasma membranes from overfed birds. A defect in the incorporation of linoleic acid and linoleic- and linolenic-derived PUFA was observed despite the high proportion of these essential fatty acids in the diet. It was conclued that in overfed palmipeds, de novo hepatic lipogenesis prevails over dietary lipid intake to modulate lipid composition of the fatty liver plasma membrane.  相似文献   

20.
Fatty acid composition of carcass and liver and proximate analysis of liver were studied in 14–28 day old Pitman-Moore miniature pigs, 26 sow-reared and 30 fed a semisynthetic diet in which the fat was lard. With increasing age, fat of carcass, but not of liver, became significantly more unsaturated. The percentage of palmitic acid (16∶0) and total saturated fatty acids was significantly greater and the percentage of linoleic acid (18∶2) and total unsaturated fatty acids significantly less in carcasses of male than of female pigs. No sex-related differences in proximate or fatty acid composition of the liver were noted. Carcasses of sow-reared pigs contained significantly greater percentages of myristic (14∶0), palmitoleic (16∶1), and linoleic acids and significantly lesser percentages of stearic (18∶0) and oleic (18∶1) acids than did those of pigs fed the semisynthetic diet. Diet-related differences in fatty acid composition of liver closely paralleled those of carcass, although liver contained markedly greater percentages of stearic and arachidonic (20∶4) acids and lesser percentages of palmitoleic and oleic acids than did carcass. Diet-related differences in fatty acid composition of carcass and liver are discussed in relation to the fatty acid composition of dietary fat (sow milk and lard).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号