首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipoxygenase pathway in sunflower roots was studied in vitro. A preliminary incubation of linoleic acid with 15 000 g supernatant of homogenate of sunflower roots (1.5-6 days after germination) revealed the predominant activity of 13-lipoxygenase. The exogenously added linoleic acid 13-hydroperoxide is further utilized through two competing pathways. One of them is directed towards formation of the ketodiene (9Z,11E)-13-oxooctadeca-9,11-dienoic acid. The second pathway, which is controlled by allene oxide synthase, leads to the formation of an alpha-ketol and a novel cyclopentenone, rac-cis-12-oxo-10-phytoenoic acid (12-oxo-PEA) via a short-lived allene oxide. Unexpectedly, the cyclopentenone 12-oxo-PEA is the predominant allene oxide synthase product. Identification of cis-12-oxo-PEA was confirmed by its UV, mass, (1)H NMR and 2D-COSY spectral data. The highest yield of 12-oxo-PEA is observed in very young roots (1.5-2 days after germination). The results of methanol-trapping experiments demonstrate that both 12-oxo-PEA and alpha-ketol are formed through the unstable allene oxide intermediate, (9Z)-12,13-epoxyoctadeca-9,11-dienoic acid, which is the primary product of allene oxide synthase. Since 12-oxo-PEA is a jasmonate congener, its biosynthesis in plants might be of physiological importance.  相似文献   

2.
Guava fruit was identified as a particularly rich source of 13-hydroperoxide lyase activity. The enzyme proved stable to chromatographic procedures and was purified to homogeneity. Based on gel filtration and gel electrophoresis, the native enzyme appears to be a homotetramer with subunits of 55 kD. Starting with primers based on the peptide sequence, the enzyme was cloned by polymerase chain reaction with 3′ and 5′ rapid amplification of cDNA ends. The sequence shows approximately 60–70% identity to known 13-hydroperoxide lyases and is classified in cytochrome P450 74B subfamily as CYP74B5. The cDNA was expressed in Escherichia coli (BL21 cells), with optimal enzyme activity obtained in the absence of isopropyl-β-d-thiogalactopyranoside and σ-aminolevulinic acid. The expressed enzyme metabolized 13(S)-hydroperoxylinolenic acid over 10-fold faster than 13(S)-hydroperoxylinoleic acid and the 9-hydroperoxides of linoleic and linolenic acids. 13(S)-Hydroperoxylinolenic acid was converted to 12-oxododec-9(Z)-enoic acid and 3(Z)-hexenal, as identified by gas chromatography-mass spectrometry. The turnover number with this substrate, with enzyme concentration estimated from the Soret absorbance, was≈2000/s, comparable to values reported for the related allene oxide synthases. Distinctive features of the guava 13-hydroperoxide lyase and related cytochrome P450 are discussed.  相似文献   

3.
The allene oxide synthase (AOS) pathway is widespread in plants. Its products, such as cyclopentenone 12-oxo-10,15-phytodienoic acid (12-oxo-PDA) and related jasmonates, play important biological roles in plants. We found that 12-oxo-PDA in some plant tissues co-occur with an unknown minor oxylipin 1. In vitro incubations of AOSs with α-linolenic acid 13(S)-hydroperoxide reliably afforded 1 along with 12-oxo-PDA and α-ketol. A similar oxylipin 3 was formed during the AOS conversions of γ-linolenic acid 9(S)-hydroperoxide. Linoleic acid hydroperoxides formed neither products similar to 1 and 3 nor cyclopentenones. Oxylipins 1 and 3 were purified and identified as the products of Favorskii-type rearrangement, (2'Z,4Z)-2-(2'-pentenyl)-4-tridecene-1,13-dioic acid and (2'Z,4Z)-2-(2'-octenyl)-4-decene-1,10-dioic acid, respectively. Detection of Favorskii products 1 and 3 demonstrates that cyclopropanones are short-lived AOS products along with allene oxides. The observed parallels between the Favorskii product 1 and 12-oxo-PDA formation suggests that cyclopropanone is either a byproduct or a precursor of 12-oxo-PDA.  相似文献   

4.
Ernst H. Oliw  Mats Hamberg 《Lipids》2019,54(9):543-556
Fusarium oxysporum f. sp. tulipae (FOT) secretes (+)-7-iso-jasmonoyl-(S)-isoleucine ((+)-JA-Ile) to the growth medium together with about 10 times less 9,10-dihydro-(+)-7-iso-JA-Ile. Plants and fungi form (+)-JA-Ile from 18:3n-3 via 12-oxophytodienoic acid (12-OPDA), which is formed sequentially by 13S-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase (AOC). Plant AOC does not accept linoleic acid (18:2n-6)-derived allene oxides and dihydrojasmonates are not commonly found in plants. This raises the question whether 18:2n-6 serves as the precursor of 9,10-dihydro-JA-Ile in Fusarium, or whether the latter arises by a putative reductase activity operating on the n-3 double bond of (+)-JA-Ile or one of its precursors. Incubation of pentadeuterated (d5) 18:3n-3 with mycelia led to the formation of d5-(+)-JA-Ile whereas d5-9,10-dihydro-JA-Ile was not detectable. In contrast, d5-9,10-dihydro-(+)-JA-Ile was produced following incubation of [17,17,18,18,18-2H5]linoleic acid (d5-18:2n-6). Furthermore, 9(S),13(S)-12-oxophytoenoic acid, the 15,16-dihydro analog of 12-OPDA, was formed upon incubation of unlabeled or d5-18:2n-6. Appearance of the α-ketol, 12-oxo-13-hydroxy-9-octadecenoic acid following incubation of unlabeled or [13C18]-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid confirmed the involvement of AOS and the biosynthesis of the allene oxide 12,13(S)-epoxy-9,11-octadecadienoic acid. The lack of conversion of this allene oxide by AOC in higher plants necessitates the conclusion that the fungal AOC is distinct from the corresponding plant enzyme.  相似文献   

5.
The genome of the neotropical fruit bat Sturnira hondurensis was recently sequenced, revealing an unexpected gene encoding a plant-like protein, CYP74C44, which shares ca. 90% sequence identity with the putative CYP74C of Populus trichocarpa. The preparation and properties of the recombinant CYP74C44 are described in the present work. The CYP74C44 enzyme was found to be active against the 13- and 9-hydroperoxides of linoleic and α-linolenic acids (13-HPOD, 13-HPOT, 9-HPOD, and 9-HPOT, respectively), as well as the 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). All substrates studied were specifically transformed into chain cleavage products that are typical for hydroperoxide lyases (HPLs). The HPL chain cleavage reaction was validated by the identification of NaBH4-reduced products (Me/TMS) of 15-HPEPE and 13- and 9-hydroperoxides as (all-Z)-14-hydroxy-5,8,11-tetradecatrienoic, (9Z)-12-hydroxy-9-dodecenoic, and 9-hydroxynonanoic acids (Me/TMS), respectively. Thus, CYP74C44 possessed the HPL activity that is typical for the CYP74C subfamily proteins.  相似文献   

6.
Hamberg M 《Lipids》1999,34(11):1131-1142
[1-14C]Linoleic acid was incubated with a whole homogenate preparation of potato leaves (Solanum tuberosum 1., var. Bintje). The methyl-esterified product was subjected to straight-phase high-performance liquid chromatography and was found to contain four major radioactive oxidation products, i.e., the epoxy alcohols methyl 10(S), 11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoate (14% of the recovered radioactivity) and methyl 12(R), 13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoate (14%), and the trihydroxy derivatives methyl 9(S), 10(S), 11(R)-trihydroxy-12(Z)-octadecenoate (18%) and methyl 9(S), 12(S), 13(S)-trihydroxy-10(E)-octadecenoate (30%). The structures and stereochemical configurations of these oxylipins were determined by chemical and spectral methods using the authentic compounds as references. Incubations performed in the presence of glutathione peroxidase revealed that lipoxygenase activity of potato leaves generated the 9- and 13-hydroperoxides of linoleic acid in a ratio of 95∶5. Separate incubations of these hydroperoxides showed that linoleic acid 9(S)-hydroperoxide was metabolized into epoxy alcohols by particle-bound epoxy alcohol synthase activity, whereas the 13-hydroperoxide was metabolized into α- and γ-ketols by a particle-bound allene oxide synthase. It was concluded that the main pathway of linoleic acid metabolism in potato leaves involved 9-lipoxygenase-catalyzed oxygenation into linoleic acid 9(S)-hydroperoxide followed by rapid conversion of this hydroperoxide into epoxy alcohols and a slower, epoxide hydrolase-catalyzed conversion of the epoxy alcohols into trihydroxyoctadecenoates. Trihydroxy derivatives of linoleic and linolenic acids have previously been reported to be growth-inhibitory to plant-pathogenic fungi, and a role of the new pathway of linoleic acid oxidation in defense reactions against pathogens is conceivable.  相似文献   

7.
Hamberg M 《Lipids》2000,35(4):353-363
[1-14C]Linoleic acid was incubated with a whole homogenate preparation from potato stolons. The reaction product contained four major labeled compounds, i.e., the α-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid (59%), the epoxy alcohol 10(S),11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoic acid (19%), the divinyl ether colneleic acid (3%), and a new cyclopentenone (13%). The structure of the last-mentioned compound was determined by chemical and spectral methods to be 2-oxo-5-pentyl-3-cyclopentene-1-octanoic acid (trivial name, 10-oxo-11-phytoenoic acid). Steric analysis demonstrated that the relative configuration of the two side chains attached to the five-membered ring was cis, and that the compound was a racemate comprising equal parts of the 9(R), 13(R) and 9(S), 13(S) enantiomers. Experiments in which specific trapping products of the two intermediates 9(S)-hydroperoxy-10(E), 12(Z)-octadecadienoic acid and 9(S), 10-epoxy-10, 12(Z)-octadecadienoic acid were isolated and characterized demonstrated the presence of 9-lipoxygenase and allene oxide synthase activities in the tissue preparation used. The allene oxide generated from linoleic acid by action of these enzymes was further converted into the cyclopentenone and α-ketol products by cyclization and hydrolysis, respectively. Incubation of [1-14C]linolenic acid with the preparation of potato stolons afforded 2-oxo-5-[2′(Z)-pentenyl]-3-cyclopentene-1-octanoic acid (trivial name, 10-oxo-11, 15(Z)-phytodienoic acid), i.e., an isomer of the jasmonate precursor 12-oxo-10, 15(Z)-phytodienoic acid. Quantitative determination of 10-oxo-11-phytoenoic acid in linoleic acid-supplied homogenates of different parts of the potato plant showed high levels in roots and stolons, lower levels in developing tubers, and no detectable levels in leaves.  相似文献   

8.
Seed from maize (corn) Zea mays provides a ready source of 9-lipoxygenase that oxidizes linoleic acid and linolenic acid into 9(S)-hydroperoxy-10(F), 12(Z)-octadecadienoic acid and 9(S)-hydroperoxy-10(E), 12(Z), 15(Z)-octadecatrienoic acid, respectively. Corn seed has a very active hydro-peroxide-decomposing enzyme, allene oxide synthase (AOS), which must be removed prior to oxidizing the fatty acid. A simple pH 4.5 treatment followed by centrifugation removes most of the AOS activity. Subsequent purification by ammonium sulfate fractional precipitation results in negligible improvement in 9-hydroperoxide formation. This facile alternative method of preparing 9-hydroperoxides has advantages over other commonly used plant lipoxygenases.  相似文献   

9.
Ziegler J  Wasternack C  Hamberg M 《Lipids》1999,34(10):1005-1015
Jasmonic acid is a carbocyclic fatty acid that is biosynthesized from α-linolenic acid in several steps. The formation of the ring structure of jasmonic acid is catalyzed by the enzyme allene oxide cyclase (EC 5.3.99.6) and involves the cyclization of an unstable allene oxide into the cyclopentenone 12-oxo-10,15(Z)-phytodienoic acid. In this study, a number of allene oxides were generated, and their enzymatic and nonenzymatic cyclization into cyclopentenones was investigated. Nonenzymatic cyclization was observed with allene oxides having one pair of conjugated double bonds and an additional isolated double bond in the β,γ position relative to the epoxide group, i.e., the partial structure 4,5-epoxy-1,3,7-octatriene. Enzymatic cyclization took place provided that this structural element was inserted in the fatty acid chain with its epoxide group in the n−6,7 position and the isolated double bond in the n−3 position. A number of oxygenated fatty acids having structural features in common with the natural allene oxides were tested as inhibitors of allene oxide cyclase. Fatty acids having an allene oxide structure in the n−6,7 position but lacking the double bond in the n−3 position, as well as fatty acids having a saturated epoxide group in the n−6,7 position, served as competitive inhibitors of the enzyme. Data on the substrate specificity of allene oxide synthase (EC 4.2.1.92) from corn seeds indicated that fatty acid hydroperoxides with a double bond at n−3 and with the hydroperoxide function at n−6 exhibit the highest affinity but the slowest reaction velocity.  相似文献   

10.
The CYP74 clan cytochromes (P450) are key enzymes of oxidative metabolism of polyunsaturated fatty acids in plants, some Proteobacteria, brown and green algae, and Metazoa. The CYP74 enzymes, including the allene oxide synthases (AOSs), hydroperoxide lyases, divinyl ether synthases, and epoxyalcohol synthases (EASs) transform the fatty acid hydroperoxides to bioactive oxylipins. A novel CYP74 clan enzyme CYP440A18 of the Asian (Belcher’s) lancelet (Branchiostoma belcheri, Chordata) was biochemically characterized in the present work. The recombinant CYP440A18 enzyme was active towards all substrates used: linoleate and α-linolenate 9- and 13-hydroperoxides, as well as with eicosatetraenoate and eicosapentaenoate 15-hydroperoxides. The enzyme specifically converted α-linolenate 13-hydroperoxide (13-HPOT) to the oxiranyl carbinol (9Z,11R,12R,13S,15Z)-11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid (EAS product), α-ketol, 12-oxo-13-hydroxy-9,15-octadecadienoic acid (AOS product), and cis-12-oxo-10,15-phytodienoic acid (AOS product) at a ratio of around 35:5:1. Other hydroperoxides were converted by this enzyme to the analogous products. In contrast to other substrates, the 13-HPOT and 15-HPEPE yielded higher proportions of α-ketols, as well as the small amounts of cyclopentenones, cis-12-oxo-10,15-phytodienoic acid and its higher homologue, dihomo-cis-12-oxo-3,6,10,15-phytotetraenoic acid, respectively. Thus, the CYP440A18 enzyme exhibited dual EAS/AOS activity. The obtained results allowed us to ascribe a name “B. belcheri EAS/AOS” (BbEAS/AOS) to this enzyme. BbEAS/AOS is a first CYP74 clan enzyme of Chordata species possessing AOS activity.  相似文献   

11.
We investigated the catalytic and kinetic properties of allene oxide synthase (AOS; E.C. 3.2.1.92) from flaxseed (Linum usitatissimum L.). Both Michaelis constant and maximal initial velocity for the conversion of 9(S)-and 13(S)-hydroper-oxides of linoleic and linolenic acid were determined by a photometric assay, 13(S)-Hydroperoxy-9(Z), 11(E)-octadecadienoic acid [13(S)-HPOD] as the most effective substrate was converted at 116.9±5.8 nkat/mg protein by the flax enzyme extract. The enzyme was also incubated with a series of variable conjugated hydroperoxy dienyladipates. Substrates with a shape similar to the natural hydroperoxides showed the best reactivity. Monoenoic substrates as oleic acid hydroperoxides were not converted by the enzyme. In contrast, 12-hydroperoxy-9(Z), 13(E)-octadecadienoic acid was a strong competitive inhibitor for AOS catalyzed degradation of 13(S)-HPOD. The inhibitor constant was determined to be 0.09 μM. Based on these results, we concluded that allene oxide synthase requires conjugated diene hydroperoxides for successful catalysis. Studying the enantiomeric preference of the enzyme, we found that AOS was also able to metabolize (R)-configurated fatty acid hydroperoxides. Conversion of these substrates into labile allene oxides was confirmed by steric analysis of the stable α-ketol hydrolysis products.  相似文献   

12.
3-Oxalinolenic acid (3-oxa-9(Z), 12(Z), 15(Z)-octadecatrienoic acid or (6(Z), 9(Z), 12(Z)-pentadecatrienyloxy)acetic acid) was synthesized from 5(Z), 8(Z), 11(Z), 14(Z), 17(Z)-eicosapentaenoic acid by a sequence involving the C15 aldehyde 3(Z), 6(Z), 9(Z), 12(Z)-pentadecatetraenal as a key intermediate. Conversion of the aldehyde by isomerization and two steps of reduction afforded 6(Z), 9(Z), 12(Z)-pentadecatrienol, which was coupled to bromoacetate to afford after purification by HPLC >99%-pure 3-oxalinolenic acid in 10–15% overall yield. 3-Oxalinolenic acid was efficiently oxygenated by soybean lipoxygenase-1 into 3-oxa-13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid, and this hydroperoxide could be further converted chemically into 3-oxa-13(S)-hydroxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid and 3-oxa-13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid. The 3-oxa-hydroperoxide also served as the substrate for the plant enzymes allene oxide synthase, divinyl ether synthase, and hydroperoxide lyase to produce 3-oxa-12-oxo-10, 15(Z)-phytodienoic acid and other 3-oxa-oxylipins that were characterized by MS, 3-Oxalinolenic acid was not oxygenated by 9-lipoxygenase from tomato but was converted at a slow rate into 3-oxa-9(S)-hydroperoxy-10(E), 12(Z), 15(Z)-octadecatrienoic acid by recombinant maize 9-lipoxygenase. Recombinant α-dioxygenase-1 from Arabidopsis thaliana catalyzed the conversion of 3-oxalinolenic acid into a 2-hydroperoxide, which underwent spontaneous degradation into a mixture of 6,9,12-pentadecatrienol and 6,9,12-pentadecatrienyl formate. A novel α-dioxygenase from the moss Physcomitrella patens was cloned and expressed and was found to display the same activity with 3-oxalinolenic acid as Arabidopsis thaliana α-dioxygenase-1. Lipoxygenase-generated 3-oxa-oxylipins are resistant toward β-oxidation and have the potential for displaying enhanced biological activity in situations where activity is limited by metabolic degradation.  相似文献   

13.
Incubation of linoleic acid with crude homogenate of tomato fruit gave a high yield (69%) of linoleic acid hydroperoxides with a ratio of 9- to 13-hydroperoxide isomers of 96∶4. After chromatography of the products, as free acids or methyl esters, hydroperoxides with 9- to 13-isomeric ratios of >99∶1 were obtained. The major product was characterized as 9-d-hydroperoxy-octadeca-trans-10,cis-12-dienoic acid. The results demonstrate the positional specificity of lipoxygenase from tomato fruit.  相似文献   

14.
Linoleic acid hydroperoxide isomerase was extracted from corn germ and partially purified by differential centrifugation. This enzyme catalyzed the isomerization of linoleic acid hydroperoxide.(see article) Isomerase also catalyzed the substitution of various reagents at the carbon bearing the hydroperoxide group. These fatty acid products had the following functional groupings: (see article) where X is either oleoyloxy, ethylthio, or methoxy resulting from the presence of oleic acid, ethanethiol, or methanol, respectively. A crude wheat germ extract containing both lipoxygenase and isomerase enzymes reacted with linoleic acid to yield alpha-ketols, gamma-ketols, and a substitution product, the linoleoyloxy ester of alpha-ketol. Characterization of these products from wheat germ enzymes showed that the substitution reaction was not unique to corn germ. Because anions of the reagents tested are typical nucleophiles, the substitution reactions may proceed by a nucleophilic mechanism as mediated by the isomerase enzyme.  相似文献   

15.
Jernerén F  Eng F  Hamberg M  Oliw EH 《Lipids》2012,47(1):65-73
Jasmonic acid (JA) is synthesized from linolenic acid (18:3n-3) by sequential action of 13-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase. The fungus Lasiodiplodia theobromae can produce large amounts of JA and was recently reported to form the JA precursor 12-oxophytodienoic acid. The objective of our study was to characterize the fatty acid dioxygenase activities of this fungus. Two strains of L. theobromae with low JA secretion (~0.2 mg/L medium) oxygenated 18:3n-3 to 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid as well as 9R-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid, which was metabolized by an AOS activity into 9-hydroxy-10-oxo-12Z,15Z-octadecadienoic acid. Analogous conversions were observed with linoleic acid (18:2n-6). Studies using [11S-2H]18:2n-6 revealed that the putative 9R-dioxygenase catalyzed stereospecific removal of the 11R hydrogen followed by suprafacial attack of dioxygen at C-9. Mycelia from these strains of L. theobromae contained 18:2n-6 as the major polyunsaturated acid but lacked 18:3n-3. A third strain with a high secretion of JA (~200 mg/L) contained 18:3n-3 as a major fatty acid and produced 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid from added 18:3n-3. This strain also lacked the JA biosynthetic enzymes present in higher plants.  相似文献   

16.
We have shown unequivocally that the positional specificity of γ-ketol formation by a corn germ enzyme was different from that observed previously by others with an alfalfa seedling enzyme. When the pure positional isomers of linoleic acid hydroperoxide served as substrates, the corn germ enzyme formed one of two γ-ketols: 12-oxo-9-hydroxy-trans-10-octadecenoic acid from 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid (99+% pure) and 10-oxo-13-hydroxy-trans-11-octadecenoic acid from 9-hydroperoxy-trans-10,cis-12-octadecadienoic acid (96% pure). Also isolated from these reactions was one of two α-ketols commonly found as a result of catalysis by linoleic acid hydroperoxide isomerase: 12-oxo-13-hydroxy-cis-9-octadecenoic acid from the 13-hydroperoxide and 10-oxo-9-hydroxy-cis-12-octadecenoic acid from the 9-hydroperoxide. Evidence is offered that γ-ketol formation is catalyzed by linoleic acid hydroperoxide isomerase, the same enzyme responsible for α-ketol production. Presented at the AOCS Spring Meeting, Dallas, Texas, April, 1975.  相似文献   

17.
In animals and plants, fatty acids with at least three double bonds can be oxidized to prostaglandin-like compounds via enzymatic and non-enzymatic pathways. The most common fatty acid precursor in mammals is arachidonic acid (C20:4) (AA) which can be converted through the cyclooxygenase pathway to a series of prostaglandins (PG). Non-enzymatic cyclization of arachidonate yields a series of isoprostanes (IsoP) which comprises all PG (minor compounds) as well as PG isomers that cannot be formed enzymatically. In contrast, in plants, α-linolenic acid (C18:3) (ALA) is the most common substrate for the allene oxide synthase pathway leading to the jasmonate (JA) family of lipid mediators. Non-enzymatic oxidation of linolenate leads to a series of C18-IsoPs termed dinor IsoP or phytoprostanes (PP). PP structurally resemble JA but cannot be formed enzymatically. We will give an overview of the biological activity of the different classes of PP and also discuss their analytical applications and the strategies developed so far for the total synthesis of PP, depending on the synthetic approaches according to the targets and which key steps serve to access the natural products.  相似文献   

18.
Cysteine reacts with linoleic acid hydroperoxide to yield several products, some of which were identified as fatty acid-cysteine adducts. The addition was catalyzed by ferric chloride (10−5 M) by initiating free radical reactions. When isomerically pure 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid and cysteine were reacted in 80% ethanol under N2, the major adducts were 9-S-cysteine-13-hydroxy-10-ethoxy-trans-11-octadecenoic acid (I) and 9-S-cysteine-10,13-dihydroxy-trans-11-octadecenoic acid (II). When the reaction included both isomers of the hydroperoxide (13-and 9-hydroperoxide) and air, an adduct of 9-oxononanoic acid and cysteine also was isolated. Additional experiments gave information about possible mechanisms of I and II formation.  相似文献   

19.
Lipoxygenase (EC 1.13.1.13) from the seed ofDimorphotheca sinuata oxidized linoleic acid to predominantly 13-L-hydroperoxy-cis-9,trans-11-octadecadienoic acid. When the reaction proceeded at pH 6.9, the 13-hydroperoxide was the only isomer detected; but at pH 5.1, the 13-isomer was 92% of the total, the remaining 8% being the 9-hydroperoxide. At both pH's small amounts of hydroxyoctadecadienoic acid accumulated during the reaction. This acid from the pH 6.9 reaction was analyzed as 13-hydroxy-cis,trans-octadecadienoic. The postulate advanced by many workers that dimorphecolic acid, 9-D-hydroxy-trans-10,trans-12-octadecadienoic acid, is biosynthesized via a lipoxygenase product was not proved. Although the product specificity ofD. sinuata lipoxygenase is like that of lipoxygenase type 1 from soybeans, its inactivity at pH 9 demonstrated that it is a novel enzyme. ARS, USDA.  相似文献   

20.
This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase‐related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase‐related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide‐metabolizing enzymes. Thr–His on the distal face of the heme is critical in switching the substrate specificity from H2O2 to fatty acid hydroperoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号