首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitch WA  Gerecke AC  Sedlak DL 《Water research》2003,37(15):3733-3741
N-nitrosodimethylamine (NDMA) is a potent carcinogen formed during chloramination of water and wastewater treatment plant effluents. A procedure is described for quantifying the concentration of the organic precursors of NDMA that could be formed during chlorination of wastewaters and natural waters. The method involves applying a high dose of monochloramine to a pH-buffered sample followed by a 10-day contact period, during which the monochloramine decays at a rate unrelated to the composition of the sample. Analyses of samples of municipal wastewater effluents and surface waters indicate that the method provides a robust and reproducible measurement of NDMA precursors over a wide range of conditions. A sensitive GC/CI/MS/MS analytical procedure for dimethylamine also is described and used to demonstrate that NDMA formation during chlorination of wastewater and natural waters cannot be explained by dimethylamine concentrations alone.  相似文献   

2.
A routine method is described for the analytical fractionation of dissolved organic matter (DOM) in natural freshwater and in used waters. The fractionation is based on the different adsorption behaviours of various constituents of the DOM on octadecyl-silica as a function of pH. The DOM is separated into a hydrophilic, an acid and a hydrophobic fraction. The detection is carried out by an on-line carbon detector. The method requires only small water samples (20 ml) with low dissolved organic carbon (DOC) concentrations (1–5 mg Cl−1). The samples can be analysed rapidly with no preconcentration. Fractionation of model compounds and mixtures demonstrates the performance of the method. The application of the method is illustrated by an investigation of the changes of the DOC composition occurring in a longitudinal transect of a river and during the infiltration of river water to groundwater.  相似文献   

3.
Changes in water quality in reclaimed water distribution systems are a major concern especially when considering the potential for growth of pathogenic microbes. A survey of 21 wastewater process configurations confirmed the high quality effluent produced using membrane bioreactor (MBR) technology, but suggests that other technologies can be operated to produce similar quality. Data from an intensive twelve-month sampling campaign in four reclaimed water utilities revealed the important trends for various organic carbon parameters including total organic carbon (TOC), biodegradable dissolved organic carbon (BDOC), and assimilable organic carbon (AOC). Of the four utilities, two were conventional wastewater treatment with open reservoir storage and two employed MBR technology with additional treatment including UV, ozone, and/or chlorine disinfection. Very high BDOC concentrations occurred in conventional systems, accounting for up to 50% of the TOC loading into the system. BDOC concentrations in two conventional plants averaged 1.4 and 6.3 mg/L and MBR plants averaged less than 0.6 mg/L BDOC. Although AOC showed wide variations, ranging from 100 to 2000 μg/L, the AOC concentrations in the conventional plants were typically 3-10 times higher than in the MBR systems. Pipe-loop studies designed to understand the impact of disinfection on the microbiology of reclaimed water in the distribution system revealed that chlorination will increase the level of biodegradable organic matter, thereby increasing the potential for microbial growth in the pipe network. This study concludes that biodegradable organic carbon is an important factor in the microbial quality and stability of reclaimed water and could impact the public health risk of reclaimed water at the point of use.  相似文献   

4.
This paper examines turbidity removal at a water treatment works in England that receives raw water which is difficult to treat during certain rainstorm events. Rainstorm events lead to elevated levels of turbidity and organic matter found in river waters. A robustness index based on settled turbidity was used to identify periods and events that adversely affected the treatment process. This coupled with raw water sampling data indicated that a change in nature and an increase in natural organic matter (NOM) concentrations occurred following rainstorm events. Experimental work investigated the effect of temperature and NOM on the coagulation process and the results show how increasing levels of NOM significantly impaired the coagulation of particulate material, leading to an increase in settled turbidity.  相似文献   

5.
The effects of discontinuous chlorination on the characteristics of the water in a pilot drinking water distribution network were investigated. The release or consumption of organic matter (as dissolved organic carbon, DOC) following chlorination and non-chlorination periods were estimated, as were changes in bacterial cell production. In each unchlorinated network 0.3 mg DOCl(-1) was consumed and the average cell production was approximately 1.3 x 10(5) cells ml(-1). In discontinously chlorinated networks (chlorine treatment: 3.3 mg Cl2l(-1), chlorine residual: 0.1 mg Cl2l(-1)) the DOC release (DOCout-DOCin) was between 0.1 and 0.2 mg Cl(-1). Biomass production (cells(out)-cells(in)) during this chlorination period was lower (approximately 2 x 10(4) cells ml(-1)). The delay before DOC was released in chlorinated networks appeared to be less than 24 h, which corresponds to one hydraulic residence time. Likewise, when chlorination was stopped, 24 h or less were required before an efficient DOC removal was resumed. When chlorination was prolonged the observed release of DOC was progressively reduced from 0.2 mg l(-1) to zero, thus after 6 weeks of continuous chlorination the DOCin was equivalent to the DOCout.  相似文献   

6.
The generation of disinfection by-products during water treatment can be controlled by reducing the levels of precursor species prior to the chlorination step. The Natural Organic Matter (NOM) is the principal organic precursor and conventional removal of pollutants such as coagulation, flocculation and filtration do not guarantee the total NOM removal. In this study the degradation of NOM model compounds (dihydroxy-benzene) as well as the removal of NOM from river water via photo-Fenton process in a CPC solar photo-reactor is presented. The effect of solar activated photo-Fenton reagent at pH 5.0 before and after a slow sand filtration (SSF) in waters containing natural iron species is investigated and the details reported. The results showed that the total transformation of dihydroxy-benzene compounds along a mineralization higher than 80% was obtained. The mineralization of the organic compounds dissolved in natural water was higher than in Milli-Q water, suggesting that the aqueous organic and inorganic components (metals, humic acids and photoactive species) positively affect the photocatalytic process. When 1.0 mg/L of Fe3+ is added to the system, the photo-Fenton degradation was improved. Therefore the photo-Fenton reagent could be an interesting complement to other processes for NOM removal. Comparing the response of two rivers as media for the organic compounds degradation it was observed that the NOM photo-degradation rate depends of the water composition.  相似文献   

7.
Halonitromethane formation potentials in drinking waters   总被引:5,自引:0,他引:5  
Halonitromethanes (HNMs) are highly cyto- and genotoxic nitrogenous disinfection by-products (DBPs) that have been detected in some water distribution systems. In this study, a systematic investigation was conducted to examine the formation potential of HNMs in drinking waters under different oxidation conditions. Formation potential tests of samples obtained from various drinking water sources showed that ozonation-chlorination produced the highest HNM yields followed by in the order of chlorination, ozonation-chloramination, and chloramination. Similar or higher HNM yields were observed in the treated waters (i.e., after conventional water treatment) than in the raw waters, indicating that hydrophilic natural organic matter (NOM) components that are not effectively removed by conventional treatment processes are likely the main precursors of HNMs. This was further confirmed by examining HNM formation potentials of NOM fractions obtained with resin fractionation. Hydrophilic NOM fractions (HPI) showed significantly higher HNM yields than hydrophobic (HPO) and transphilic (TPH) fractions. The correlation analysis of HNM formation potentials during ozonation-chlorination with various water quality parameters showed the best correlation between the HNM yields and the ratio of dissolved organic carbon to dissolved organic nitrogen concentrations in the water samples tested.  相似文献   

8.
Antibiotic resistance in clinical settings has been studied from last few decades but the possibility of development of antibiotic resistance at polluted environmental sites is also of concern. In developing countries, the major source of antibiotic contamination in surface water is improper disposal of effluents from industries, hospitals and domestic waste water treatment plants. The antibiotic pollution combined with other environmental pollution factors exerts selective pressure on environmental microbes, driving evolution and resulting in the spread of antibiotic resistance in a local to global scale. Present study aimed to determine the proliferation of ciprofloxacin resistant bacteria in aquatic environment of a river which is heavily impacted by industrial effluents. Correlation analyses were performed to evaluate the impact of anthropogenic factors. Statistical analysis evaluated the effect of fluoroquinolones, heavy metals, total organic carbon and total nitrogen on the levels of resistant culture in samples from the natural settings.  相似文献   

9.
This paper presents an application of our newly developed adsorptive ozonation process using a high silica zeolite adsorbent (USY) for drinking water treatment. First, the adsorption of 2-methylisoborneol (2-MIB) on USY in a river water/pure water mixture was clarified by a batch-type adsorption experiment. The results showed that 2-MIB was adsorbed on USY; however, almost all of the adsorbed 2-MIB was desorbed over time. The desorption rate was increased with the ratio of river water to pure water, indicating that compounds dissolved in the river water, such as natural organic matter (NOM), prevent the adsorption of 2-MIB on USY. Second, the ability of the river water to consume ozone was confirmed in an experiment using a USY-packed column reactor. The ozone consumption was obviously increased by the presence of USY, indicating that USY-adsorbing compounds dissolved in the river water (probably small size NOM) consumed the ozone. However, the rapid ozone consumption was occurred by 6-8 s in the retention times when 3.14-4.38 mgL(-1) of water dissolved ozone was fed, this rapid ozone consumption lasted no more than these times. This result revealed that the rapid consumption of ozone by the adsorptive compounds in our process could be avoided within a certain retention time (6-8 s; especially for the river water used in this study) when enough concentration of ozone (3.14 mgL(-1) or more; same above) was supplied. We therefore performed a trial in which 2-MIB dissolved in river water was continuously decomposed using a USY-packed column with various ozone concentrations. In the process, the adsorptive compound dissolved in the river water adsorbed and reacted with ozone in the parts of the apparatus upstream of the column, while the adsorption and decomposition of 2-MIB took place in the parts of the apparatus downstream of the column. This resulted in a sufficient 2-MIB decomposition with minimizing bromate ion formation.  相似文献   

10.
Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry.  相似文献   

11.
N-nitrosodimethylamine (NDMA), a disinfection byproduct of water and wastewater treatment processes, is a potent carcinogen. We investigated its occurrence and the potential for its formation by chlorination (NDMA-FP2Cl) and by chloramination (NDMA-FP2NHCl) in ground water and river water in Tokyo. To characterize NDMA precursors, we revealed their molecular weight distributions in ground water and river water. We collected 23 ground water and 18 river water samples and analyzed NDMA by liquid chromatography-tandem mass spectrometry. NDMA-FP2Cl was evaluated by chlorinating water samples with free chlorine for 24 h at pH 7.0 while residual free chlorine was kept at 1.0-2.0 mgCl2/L. NDMA-FP2NHCl was evaluated by dosing water samples with monochloramine at 140 mgCl2/L for 10 days at pH 6.8. NDMA precursors and dissolved organic carbon (DOC) were fractionated by filtration through 30-, 3-, and 0.5 kDa membranes. NDMA concentrations were <0.5-5.2 ng/L (median: 0.9 ng/L) in ground water and <0.5-3.4 ng/L (2.2 ng/L) in river water. NDMA concentrations in ground water were slightly lower than or comparable to those in river water. Concentrations of NDMA-FP2Cl were not much higher than concentrations of NDMA except in samples containing high concentrations of NH3 and NDMA precursors. The increased NDMA was possibly caused by reactions between NDMA precursors and monochloramine unintentionally formed by the reaction between free chlorine and NH3 in the samples. NDMA precursors ranged from 4 to 84 ng-NDMA eq./L in ground water and from 11 to 185 ng-NDMA eq./L in river water. Those in ground water were significantly lower than those in river water, suggesting that NDMA precursors were biodegraded, adsorbed, or volatilized during infiltration. The molecular weight of NDMA precursors in river water was dominant in the <0.5 kDa fraction, followed by 0.5-3 kDa. However, their distribution was inconsistent in ground water: one was dominant in the <0.5 kDa fraction, and the other in 0.5-3 kDa. Molecular weight distributions of NDMA precursors were very different from those of DOC. This is the first study to reveal the widespread occurrence and characterization of NDMA precursors in ground water.  相似文献   

12.
Transformation of organic matter and bank filtration from a polluted stream   总被引:1,自引:0,他引:1  
A case study of the examination of the changes of organic matter in a small, highly polluted stream and the adjacent alluvial aquifer is presented. The investigated stream was actually a collector of effluents from baker's yeast and pharmaceutical industries. The stream was characterized by a COD of several thousands of mg O2 l−1, most of which was biodegradable organic matter. Biodegradation processes took place in the surface water, with consequent oxygen depletion in the stream. The organic matter content of the river sediment was more than 10% of its dry weight. Bank filtration of organic substances was investigated in a number of observation wells at distances of 5–150 m from the river (under different hydrological conditions). The infiltration of organic matter from the polluted stream into the aquifer was found to be significant only at hydrological conditions where the water level exceeds the altitude of the stream bed. The organic matter present in groundwater samples was mainly a humic/fulvic type, and was not degraded during the 64 days of the laboratory biodegradation experiment.  相似文献   

13.
Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.  相似文献   

14.
The behavior of anthropogenic polar organic compounds in ground water during infiltration of river water to ground water was studied at the Oderbruch area on the eastern border of Germany. Additionally, waste water sewage treatment works (STWs) discharging their treated waste water into the Oder River and rain water precipitation from the Oderbruch area were investigated. The study was carried out from March 2000 to July 2001 to investigate seasonal variations of the target analytes. Samples were collected from four sites along the Oder River, from 24 ground water monitoring wells located close to the Oder, from one rain water collection station, from two roof runoffs, and from four STWs upstream of the Oderbruch. Results of the investigations of the antioxidant 3,5-di-tert-butyl-4-hydroxy-toluene (BHT) and its degradation product 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO) are presented. BHT and BHT-CHO were detected in all samples of the Oder River with mean concentrations of 178 and 102 ngl(-1), respectively. BHT and BHT-CHO were also detected in effluent waste water samples from municipal STWs at mean concentrations of 132 and 70 ngl(-1), respectively. Both compounds are discharged into river water directly via treated waste water. In the rain water sample, 308 ngl(-1) of BHT and 155 ngl(-1) of BHT-CHO were measured. Both compounds were detected in roof runoff with mean concentrations of 92 ngl(-1) for BHT and 138 ngl(-1) for BHT-CHO. The median values of BHT and BHT-CHO in ground water samples were 132 and 84 ngl(-1), respectively. The chemical composition of ground water from parts of the aquifer located less than 4.5 m distant from the river are greatly influenced by bank filtration. However, wet deposition followed by seepage of rain water into the aquifer is also a source of BHT and BHT-CHO in ground water.  相似文献   

15.
Adsorption of cholesterol and 2,2',5,5'-tetrachlorohiphenyl by particles from river water and treated sewage was studied in distilled water, sewage and river water and was compared to adsorption in solutions of organic matter concentrated from sewage and river water by ultrafiltration. Partition coefficients and standard free energies of adsorption are reported. Results indicate that sewage particulate matter is a more effective adsorbent than river particulates. Adsorption from samples of concentrated dissolved organic matter was less efficient than from unconcentrated samples and from distilled water. Chemical equilibrium considerations indicate that this is due either to formation of associations between the study compounds and other dissolved organic matter, thus stabilizing them in the dissolved phase, or to competitive adsorption.  相似文献   

16.
The surface activity of river water humic acids (HA) has been studied using the principle of suppression of polarographic streaming maxima by organics that adsorb on the mercury electrode. HA isolated from river water by hydrophobic adsorption onto Amberlite XAD-2 were found to be almost four times more effective at maximum suppression than natural river water organics as a whole. Ultraviolet and fluorescence measurements indicated that 25–30% of total dissolved organics were in the hydrophobic HA fraction. HA's were found to interact interfacially with other more hydrophilic organic components with a 50% decrease in their surface activity. Similar interactions were found with synthetic surface-active materials.  相似文献   

17.
The effects of granular activated carbon filtration and of the combination of ozonation and GAC filtration on the quality of Rhine water were studied in a pilot plant. The scope of the study was to compare both systems in relation to the removal of organic contaminants in water, and to the reduction of the side effects of chlorination. The water quality was measured with organic surrogate parameters (organohalogen, -nitrogen, -phosphorus and -sulphur) and in bacterial mutagenicity assays.In this particular setting, the combination of ozonation and GAC filtration was superior in all points to GAC filtration alone. The effects of ozonation are sometimes quite different, depending on the type of water treated. Its positive influence should be confirmed in a local situation.As GAC treatment causes a shift towards formation of more brominated THM after chlorination, special attention was given to this item. A higher inorganic bromide/DOC ratio resulted in higher brominated THM concentrations after chlorination. However, the mutagens formed during chlorination in presence of more inorganic bromide could be inactivated more easily by rat liver homogenate than in the normal setting. The results of this study confirmed earlier findings stating a negative influence of chlorination on water quality.  相似文献   

18.
The chlorination reactions of glyphosate and glycine in water were thoroughly studied. Utilizing isotopically enriched (13C and 15N) samples of glycine and glyphosate and 1H, 13C, 31P, and 15N NMR spectroscopy we were able to identify all significant terminal chlorination products of glycine and glyphosate, and show that glyphosate degradation closely parallels that of glycine. We have determined that the C1 carboxylic acid carbon of glycine/glyphosate is quantitatively converted to CO2 upon chlorination. The C2 methylene carbon of glycine/glyphosate is converted to CO2 and methanediol. The relative abundance of these two products is a function of the pH of the chlorination reactions. Under near neutral to basic reaction conditions (pH 6-9), CO2 is the predominant product, whereas, under acidic reaction conditions (pH < 6) the formation of methanediol is favored. The C3 phosphonomethylene carbon of glyphosate is quantitatively converted to methanediol under all conditions tested. The nitrogen atom of glycine/glyphosate is transformed into nitrogen gas and nitrate, and the phosphorus moiety of glyphosate produces phosphoric acid upon chlorination. In addition to these terminal chlorination products, a number of labile intermediates were also identified including N-chloromethanimine, N-chloroaminomethanol, and cyanogen chloride. The chlorination products identified in this study are not unique to glyphosate and are similar to those expected from chlorination of amino acids, proteins, peptides, and many other natural organic matters present in drinking water.  相似文献   

19.
The impact of a combined sewer overflow (CSO) upon receiving waters has been studied in the river Seine during Summers 1995 and 1996. Three main events have been monitored with special attention paid to the computation of oxygen, carbon and suspended solids budgets. Bacterial biomass and bacterial production rates have been measured to provide a more accurate understanding of the carbon cycle of the river Seine. Oxygen consumption inside the polluted water masses was totally due to the activity of large bacteria discharged into the river by the CSO, the activity of native small bacteria did not significantly increase after CSOs. Suspended solids issued from the CSO very quickly settles in this deep, slowly flowing river. However, discharged dissolved organic carbon (DOC) cannot account for the observed oxygen depletions, the additional carbon source could be phytoplankton or deflocculated/degraded particulate organic matter.  相似文献   

20.
Effects of chlorine dose, reaction time and temperature on the formation of disinfection by-products (DBPs) and corresponding changes in the absorbance of natural organic matter (NOM) in chlorinated water were examined in this study. Although variations of chlorination parameters, notably those of temperature that was varied from 3 to 35 degrees C, influenced the kinetics of chlorine consumption and DBP release, correlations between chlorine consumption, concentrations of trihalomethanes (THMs), haloacetonitriles (HANs), other DBP species and, on the other hand, intensity of differential absorbance at 272nm remained unaffected. THM and HAN speciation was correlated with the differential absorbance, indicating preferential incorporation of bromine at the initial phases of halogenation that correspond to low DeltaA(272) values. Because the DeltaA(272) parameter is a strong indicator of the formation of DBP species and chlorine decay, optimization of chlorination operations and DBPs control based on this parameter can be beneficial for many water utilities, especially those with pronounced variability of water temperature and residence times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号