首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously pressurized (pre-pressurized) fuel rod tests recently performed in the Nuclear Safety Research Reactor (NSRR) investigate the effects of initial internal pressure on fuel rod behavior during reactivity initiated accident (RIA) conditions. A single PWR type fuel rod was contained within a waterfilled, ambient temperature and ambient pressure capsule. The fuel rod was then heated by the pulsing operation of the NSRR.

Results from the tests show that the effect of pre-pressurization was significant for the fuel rods with initial internal pressure of 0.8 MPa and above, and fuel rod failure occurred from rupture of the cladding with lower threshold energy deposition for failure as the initial internal pressure was increased. The cladding rupture was governed mainly by the cladding temperature rise, not by the rod internal pressure rise during the transient. The relationships between cladding burst pressure and cladding burst temperature and between cladding strain and cladding temperature at cladding rupture obtained in the present study under an RIA condition agree with the results obtained from various in- and ex-reactor experiments under a LOCA condition, although the obtained time-averaged strain rate of the Zircaloy cladding was much greater than that in a LOCA condition.  相似文献   

2.
In-reactor experiments were performed in Nuclear Safety Research Reactor of Japan Atomic Energy Research Institute to study the failure behavior of stainless steel clad fuel rods under a simulated reactivity initiated accident (RIA) condition. A single test fuel rod with stainless steel cladding was contained in a capsule filled with water at room temperature and atmospheric pressure and irradiated by pulsing power simulating an RIA. It was revealed through the experiments that the failure mechanism of the stainless steel clad fuel rod was cladding melting, which was different from oxygen-induced embrittlement observed in the Zircaloy clad fuel rod in the same test condition, and the failure threshold energy was determined to be about 240cal/g·UO2 (–1,000 kJ/kg·UO2), which was about 20 cal/g·UO2 (–85 kJ/kg·UO2) lower than that of the Zircaloy clad fuel rod. It was also found that the mechanical energy was generated by explosive vaporization of coolant due to molten fuel-coolant interaction as a consequence of the fuel rod failure accompanying fuel pellet fragmentation at an energy deposition of nearly 380 cal/g·UO2 (–1,600 kJ/kg·UO2) or more.  相似文献   

3.
Waterlogged fuel rod experiments performed at the NSRR are analyzed using the computer code WTRLGD, which was devised for the analyses of thermo-dynamical behavior of a waterlogged fuel rod. The numerical results are compared with the data from the experiments in order to assess the validity of the computer code. Parameters in the analyses are volumetric fraction of water, reactor period, gap width, a pin hole and the end peaks. Thus the analyses cover almost all the waterlogged fuel rod experiments at the NSRR.

The comparison shows good agreement between the experimental results and numerical ones on the transient thermo-dynamical behaviors of fuel, such as, rod internal pressure, cladding surface temperature and cladding strain. The numerical results also quantitatively agree with the experimental data concerning the effects of the above parameters on failure threshold energy. From the above findings, the computer code is assessed to be valid enough for the analyses of the failure behavior of the waterlogged fuel rod under a reactivity initiated accident condition.  相似文献   

4.
Fuel rod behavior under Reactivity Initiated Accident (RIA) conditions has been studied in the Nuclear Safety Research Reactor (NSRR), JAERI. In the experiments, cladding thermal behavior was observed to be influenced by the fuel pellet eccentricity to produce large azimuthal temperature variation in the cladding. The maximum azimuthal cladding temperature difference was measured to be as large as 150°C by thermocouples attached to opposite sides of the cladding around the circumference, though the thermocouples did not always detect the maximum temperature difference around the circumference. The actual temperature differences in the fuel rods subjected to less than 290 cal/g?UO2 were estimated to be 350°C at maximum based on metallographies. A simple calculation considering gap conductance variations also showed that the maximum temperature difference became 350°C under fully eccentrical condition in the fuel rod subjected to 260 cal/g?UO2. Moreover, as the rod damage such as cladding deformation, melting and failure occurs unevenly around the circumference due to the fuel pellet eccentricity in general, the fuel pellet eccentricity should influence the fuel rod failure under RIA conditions.  相似文献   

5.
Nuclear reactor operating modes under multiple cyclic power changes have been promoted recently, and fuel element cladding behavior under the multiple cyclic power changes has been widely known as a key issue in terms of rod design and reliability. A model of nuclear reactor fuel rod cladding failure estimation under multiple cyclic power changes is proposed. The model is built on the basis of the following admissions of the energy version of creep theory: processes of cladding creep and destruction proceed together and affect each other, intensity of creep process is estimated by specific dispersion power W(τ), while intensity of destruction—by specific dispersion energy A(τ) accumulated during time τ. Having calculated the equivalent stress and the rate of equivalent creep strain, the condition of fuel rod cladding failure used on the basis of the energy version of the theory of creep gives us a criterion to decide if a multiple cyclic power change operating mode is permissible for a given variant of power history and coolant conditions.  相似文献   

6.
Several consequences of steam starvation of the gas filling the internals of the core of a light-water reactor in the fuel-uncovery phase of a severe accident up to cladding melting are analysed. Emphasis is placed on processes that occur in the H2-rich gas external to the fuel rod cladding; absorption of oxygen and hydrogen by the cladding; the composition and flow rates of gas in the fuel-cladding gap; and the response of the fuel to these conditions. The transport processes and chemical reactions in the cladding, and the fuel controlled by the behavior of the gas in the gap are modeled for a simple temperature transient characteristic of a severe fuel damage accident in a light-water reactor. Cladding burst is assumed to occur at 1273 K at the midplane elevation of the fuel rod, permitting the gas in the gap to come into contact with that external to the fuel rod. The results of the analysis include the following. Steam ingress is restricted to a few centimeters from the failure site by the gettering action of the metal-water reaction on the cladding inner wall. Hydrogen moves axially into the gap only a few times further than steam by diffusion in the Xe-He mixture. The chief process restricting H2 ingress is the backflow resulting from thermal expansion of the gas in the fuel rod as the temperature rises. When the protective ZrO2 scale on the outer surface of the cladding disappears by dissolution in the metal, hydrogen permeation through the cladding wall rapidly replaces the inert gas in the gap with H2. Hydrogen uptake by the cladding draws gas into the core region from the upper plenum and augments the heat release by the metal-water reaction. Exposure of the fuel to this H2-rich gas results in minor fuel reduction and accompanying cladding oxidation.  相似文献   

7.
Hardness measurements are potentially valuable for a quantitative discussion of embrittlement in the inner portions of fuel cladding tubes. The size of the indentation, however, is not negligible compared to the measuring region, even when a micro Vickers hardness tester is employed. This limits the measuring technique, and very little has been studied about degradation phenomena in the inner portion of the tubes.

A hardness measurement system, equipped with a depth-sensing indentation instrument, and the necessary post irradiation examination technique for specimens with high radioactivity were successfully developed and the following observations were obtained from the system's application example. The diffusion coefficient of oxygen obtained from the hardness of an unirradiated zirconium lined cladding with simulated oxidation in the fuel rod showed good agreement with literature data. The calculated diffusion coefficient from hardness in the inner portion of irradiated Zircaloy-2 fuel rods was almost the same value as that of unirradiated zirconium, which implied that neither neutron irradiation nor fission fragment bombardment enhanced the oxygen diffusion in the inner portion of cladding tube.  相似文献   

8.
To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding.The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8 × 8 RJ fuel rod temperatures under power ramp conditions.  相似文献   

9.
Results obtained in the pulse irradiation tests performed on segmented fuel elements in the Romanian Annular Core Pulse Reactor (ACPR) are discussed below. Tests included the effects of initial element internal pressure and a wide range of energy deposition on the fuel element behavior. All tests were conducted in stagnant water at room temperature and atmospheric pressure inside the capsule. The fuel elements were instrumented with thermocouples for cladding surface temperature measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during the tests. The fuel elements were subjected to total energy depositions from 70 to 265 cal g−1 UO2. Cladding failure mechanism and the failure threshold have been established. The fuel failure mechanism is a burst type and is very similar to LOCA failure mechanism even though the rate energy deposition is higher in the ACPR tests. At higher energy deposition brittle cladding fracture near endcap weld region can be produced. The failure threshold is situated between 190 and 200 cal g−1 UO2 for standard fuel rod (0.2–0.3 MPa internal pressure) and less than 160 cal g−1 UO2 for pressurized fuel rods (internal pressure between 1 and 3.0 MPa). Pre-pressurization could be an important factor to control the failure threshold energy. The experimental program is still in progress and new experiments are foreseen to be performed in the following period.  相似文献   

10.
A computer code WTRLGD has been developed to describe the transient internal pressure of a waterlogged fuel rod during power burst and also to predict the possibility of the rod failure in the mode of cladding rupture. The code predicts transient thermal behavior of the fuel rod on the basis of an assumption of axisymmetry, and thermal-hydraulic transients of the internal water on the basis of a homogeneous volume-junction model modified so as to involve the cladding deformation. Calculated transients of the rod pressure are in fairly good agreement with those measured in the NSRR experiments, simulating the fuel rod behavior under an RIA condition. The comparison between calculation and experiment verifies that the code is an effective tool for the prediction of the failure of a waterlogged fuel rod.  相似文献   

11.
Hydride precipitation along the radial-axial plane increases in high burn-up boiling water reactor (BWR) fuel claddings. The radially-oriented hydrides may have an important role during fuel behavior in a reactivity-initiated accident and may reduce ductility of the cladding under pellet-cladding mechanical interaction (PCMI) conditions. In order to promote a better understanding of the influence of the radial hydrides on cladding failure behavior under the PCMI conditions, tube burst tests were conducted for unirradiated BWR claddings charged with 200 to 650 ppm of hydrogen. About 20 to 30% of hydrides were re-oriented and precipitated along the radial-axial plane. The claddings exhibited large rupture openings with an axial crack at room temperature and 373 K. The crack penetrated through cladding wall preferentially along the radial hydrides, and radial cross section showed cladding failure in a brittle manner. However, reduction in residual hoop strain by precipitation of the radial hydrides was very small. It is accordingly expected that ductility of high burn-up BWR cladding is significantly reduced not only by precipitation of radial hydrides as far as hydrogen concentration and radial hydride fraction range in the present study.  相似文献   

12.
Pulse irradiation tests of two types of rock-like oxide (ROX) fuel, i.e. yttria stabilized zirconia (YSZ) and YSZ/Spinel composite, were conducted in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under reactivity-initiated accident conditions. The ROX fuels failed with cladding burst at fuel volumetric enthalpies above 10 GJ m−3, which was comparable to that of UO2 fuel. The failure of the ROX fuels, however, occurred with considerable fuel melting and was quite different to that of UO2 fuel, which was caused by cladding melting and embrittlement due to heavy oxidation. Lower fuel melting temperature of the ROX fuels compared to that of UO2 contributed to the different fuel failure modes. Certain amount of molten ROX fuel dispersed out at the failure. However, the mechanical energy generation due to the molten fuel/water interaction was negligible for the ROX fuels at peak fuel enthalpies below 12 GJ m−3.  相似文献   

13.
This paper describes the in-pile experimental results to study the influences of coolant flow on fuel behaviors under reactivity initiated accident (RIA) conditions performed in the Nuclear Safety Research Reactor (NSRR). A single PWR type test fuel rod was irradiated by a large neutron pulse in the NSRR to simulate a prompt power excursion of RIA's. The effects of coolant flow were studied at a coolant flow velocity of 0.3~1.8m/s and a coolant temperature of 20~90°C under the atmospheric pressure. It was found that the cooling conditions had considerable influences on fuel thermal behaviors under prompt heat-up. The increase of coolant flow velocity and subcooling enhanced heat transfer coefficient at cladding surface during film boiling, which resulted in large decrease of maximum cladding temperature and film boiling duration, and consequently in the increase of fuel failure threshold energy. The data tendencies are summarized and the influences of coolant flow are discussed with some computer analyses.  相似文献   

14.
The NSRR programme is in progress in JAERI using a pulsed reactor to evaluate the behavior of reactor fuels under reactivity accident conditions. This report describes briefly the experimental results and preliminary analysis of two cluster tests.

In the cluster configuration of five fuel rods, the power distribution in outer fuel rods are not symmetric due to neutron absorption in central fuel rod. The cladding temperature on the exterior boundaries of the cluster is higher than that in interior. Good agreement was obtained between the calculated and measured cladding temperature histories. In the 3.8$ excess reactivity test, cluster averaged energy deposition of 237 cal/g-UO2, cladding melting and deformation were limited to the portions of the fuel rods that were on the exterior boundaries of the cluster.  相似文献   

15.
In-pile experiments of fresh fuel rods under reactivity initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor at the Japan Atomic Energy Research Institute in order to understand the basic pellet cladding mechanical interaction (PCMI) behavior. Rapid fuel pellet expansion due to a power excursion would cause radial and longitudinal deformation of the cladding. This PCMI could be one of the possible incipient failure modes of an embrittled cladding of a high burnup fuel under the RIA conditions.

Basic PCMI behavior was studied by measuring cladding deformation of a fresh fuel rod without complicated irradiation effects. The transient elongation measurements of the fuel with two kinds of gap width indicated not only PCMI-induced cladding elongation, but also reduction of the pellet stack displacement by the cladding constraint. In the tests under a high-pressure and high-temperature condition simulating an operation condition of BWRs, additional ridge-type cladding deformation was generated due to the axial collapse of the cladding. A preliminary analysis for interpretation of the tests was made using a computer code for the transient analysis of fuel rods, FRAP-T6.  相似文献   

16.
Fuel swelling of previously irradiated pressurized-water-reactor-type fuel rods tested under power-cooling-mismatch conditions is due to retained fission gas and thermal effects within the film boiling region. In this paper empirical correlations for fuel swelling are presented, and mechanisms contributing to the observed swelling and the applicability of an analytical fission gas behavior computer code (GRASS-SST) to fuel swelling are evaluated. Major contributors to fuel swelling are fuel melting and expansion, expansion of solid fuel, fission gas bubble coalescence, fission gas diffusion to grain boundaries, and change in surface tension of fuel upon melting. The contributions to fuel swelling of solid fission products and the effects of cladding contraction and wall thinning on rod swelling are also included. The overall empirically-calculated fuel swelling values and the GRASS-SST code calculated values are compared with measured values. The agreement between measured and empirically calculated fuel swelling is generally close. Fuel swelling due to retained fission gas during the film boiling transient, as calculated by the GRASS-SST code, was found to be in good agreement with experimental results.  相似文献   

17.
The possible causes of the destruction of the Chernobyl reactor core were examined by making use of the Nuclear Safety Research Reactor (NSRR) experimental results concerning the destructive forces generated by a fuel failure. A complementary experiment with Chernobyl reactor conditions was performed in order to observe the fuel failure behavior and the resultant vessel pressure rise, etc. Also, generation of hydrogen from the fuel rod cladding and the consequent system pressure rise were estimated based on the experiments.These examinations led to the conclusion that the most probable cause of the core pressure tube rupture in the accident was a static pressure rise due to rapid energy release from fragmented fuel. Other phenomena such as the hydrogen generation and molten fuel contact to the tube wall might have contributed to the tube rupture. The water hammer force is also estimated to have been large enough to break tubes even using conservative assumptions.  相似文献   

18.
A continuum damage mechanics model using FEM calculations was proposed to be applied to an analysis of the fuel failure due to pellet cladding mechanical interaction (PCMI) under reactivity-initiated accident conditions. The model expressed ductile fracture via two processes: damage nucleation related to void nucleation and damage evolution related to void growth and linkage. The boundary conditions for the simulations were input from the fuel performance codes FEMAXI-7 and RANNS. The simulation made reasonable predictions for the cladding hoop strain at failure and reproduced the typical fracture behavior of the fuel cladding under the PCMI loading, characterized by a ductile shear zone in the inner region of the cladding wall. It was shown that occurrence of a through-wall crack is determined at an early stage of crack propagation, and the rest of the through-wall penetration process is achieved with a negligible increment in strain. The effect of a local temperature rise in the cladding inner region on the failure strain was found to be less than 5% for the conditions investigated. Failure strains predicted under a plane strain loading were smaller by 20%–30% than those predicted under equibiaxial tensions between the hoop and the axial directions.  相似文献   

19.
With a view to examining the failure-bearing capability of Zircaloy-4 cladding under postulated Loss-of-Coolant Accident condition in LWRs, integral tests of rod-burst, oxidation and thermal-shock were performed using simulated fuel containing A1203 pellets sheathed in Zircaloy-4 specimen cladding, filled with He gas, and sealed. This simulated fuel rod was oxidized in steam flowing at the isothermal oxidation temperatures between 920 and 1,330°C for duration ranging of 3~180 min after the cladding burst. After isothermal oxidation, the rod was quenched with bottom-flooding water under the condition of constraint or no constraint.

The failure boundary oxidation condition of the cladding on quenching under no constraint condition lay in the region of 35~38% ECR for the isothermal oxidation temperatures between 1,050 and 1,330°C. For the temperatures ranging 970~1,050°C, the boundary value of ECR was somewhat lower than that obtained for higher temperatures.

The failure boundary oxidation condition of the cladding on quenching under constraint condition lay in the region of 19~24% ECR for the isothermal oxidation temperatures between 930 and 1,310°C. It is sufficiently large compared with the criterion of 15% ECR in Japanese acceptance criteria for ECCS. Hydrogen absorbed by the Zircaloy-4 cladding as well as oxygen played a dominant role in the fracture behavior of the rod during flooding under constraint condition.  相似文献   

20.
Prestorage drying operations of high-burnup fuel may make Zircaloy-4 (Zry-4) fuel cladding more susceptible to failure, especially during fuel handling, transport, and post-storage retrieval. In particular, hydride precipitates may reorient from the circumferential to the radial direction of the cladding during drying operations if a threshold level of hoop stress at or above a corresponding threshold temperature is exceeded. This study indicates that the threshold stress is approximately 75–80 MPa for both nonirradiated and high-burnup stress-relieved Zry-4 fuel cladding cooled from 400°C and, under ring compression at both room temperature and 150°C, that radial-hydride precipitation embrittles Zry-4. Specifically, the plastic tensile hoop strain needed to initiate unstable crack propagation along radial hydrides decreases dramatically from >8% to lt;1% as radial-hydride fraction increases. Lower hydrogen contents (lr;300wppm) appear to be more susceptible to radial-hydride embrittlement compared to higher contents (>600 wppm), like that found in high-burnup Zry-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号