首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对磷酸钒锂电导率低的问题,以硝酸锂、偏钒酸铵、磷酸二氢铵为原料,甘氨酸为络合剂和燃料,葡萄糖为碳源,硝酸铝为铝源,采用溶液燃烧合成法制备铝掺杂的Li_3V_2(PO_4)_3/C粉末,以改善其电化学性能。将制备得到的铝掺杂的Li_3V_2(PO_4)_3/C粉末作为锂离子电池正极材组装成电池进行了恒电流充放电测试、循环伏安(CV)和交流阻抗(EIS)等电化学性能测试。结果表明:铝掺杂能有效提高磷酸钒锂电导率,不同的铝掺杂比例的磷酸钒锂具有不同的的电子电导率和锂离子扩散速率,从而具有不同的放电比容量、循环性能和倍率性能;当铝掺杂含量为1%时,磷酸钒锂具有最优的电化学性能,在充放电速度为10C循环500次后放电容量为104.6 mAh/g。  相似文献   

2.
以LiOH·H_2O为Li源,FeNO_3·9H_2O为Fe源,NH_4H_2PO_4提供磷酸根,柠檬酸作为碳源和螯合剂进行配料,采用简单的制备工艺冷冻干燥法合成了电池级正极材料磷酸铁锂粉末。通过XRD物相表征、电池充放电和循环伏安等测试手段探究了烧结工艺对碳包覆磷酸铁锂(LiFePO_4/C)正极材料的结晶性及电化学性能的影响。结果表明,煅烧温度为750℃时获得的正极材料LiFePO_4/C电化学性能表现最好,在不同电流密度下0.1C、0.2C、1C、2C和5C的放电比容量分别为150.5、142.2、128.1、117.8和105.4 mAh/g。  相似文献   

3.
采用颗粒纳米化技术与雾化干燥相结合的方法合成了高性能的LiFe_(0.98)Ti_(0.02)PO_(4-x)F_x/C(x=0.00,0.02)正极材料。利用X-ray粉末衍射仪、场发射扫描电子显微镜和蓝电测试系统对合成材料的晶体结构、颗粒形貌和电化学性能进行了表征。结果表明,采用该方法可明显降低一次颗粒粒径,同时引入Ti-F掺杂可进一步提高产品的电化学性能。LiFe_(0.98)Ti_(0.02)PO_(3.98)F_(0.02)/C表现出最好的电化学性能,其0.1C首次放电比容量和库伦效率分别为163.9mAh/g和97.3%;1C放电比容量为144.3mAh/g,循环50次后容量保持率为98.8%,表现出了较高放电比容量和良好的循环性能。  相似文献   

4.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

5.
研究了导电剂种类和导电剂含量对磷酸钒锂电化学性能的影响。以Li_3V_2(PO_4)_3为正极材料,研究了石墨烯、乙炔黑和Super P Li三种导电剂对磷酸钒锂电化学性能的影响。恒电流充放电和电化学阻抗测试结果表明,不同的导电剂对电极的电化学性能有显著的影响。以Super P Li为导电剂的磷酸钒锂正极材料表现出最高的放电比容量和最优异的倍率性能,交流阻抗值小。在此基础上探究了Super P Li含量对磷酸钒锂电化学性能的影响,结果表明添加质量分数10%Super P Li的电池具有较小的阻抗和较高的放电比容量、循环性能和倍率性能。  相似文献   

6.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

7.
采用溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2正极材料。探究不同的锂配比、不同的烧结温度对正极材料的形貌和电化学性能的影响。电化学性能测试结果表明:当锂过量13%,烧结温度为800 ℃时电化学性能较优,其首次放电比容量达179.89 mAh/g,0.2 C循环20次后容量保持率为94.72%,且此时材料的电极极化程度最小,晶体结构最稳定,循环可逆性也最好。XRD、TEM的分析结果说明:LiNi0.8Co0.1Mn0.1O2正极材料具有较好的结晶性,且有良好的a-NaFeO2层状结构,做出的材料形貌为不规则块状。   相似文献   

8.
为提高正极材料LiNi1/3Co1/3Mn1/3O2的循环性能, 采用氢氧化物共沉淀法对前驱体进行Mg掺杂, 再经过混锂、球磨、高温煅烧后, 分别对掺杂与未掺杂的正极材料进行了XRD、SEM及电化学性能的比较.研究结果表明:掺杂与未掺杂的正极材料都为标准的α-NaFeO2型层状结构, 粒度大小无明显变化; 对于掺杂量为0.03与未掺杂的正极材料, 首轮放电比容量分别为138.2 mAh/g和145.3 mAh/g; 而循环50轮的放电比容量则分别为131.1 mAh/g和119.5 mAh/g.由此可见, 通过Mg掺杂, 正极材料的首轮放电比容量虽有少量降低, 而循环性能却有明显增强.   相似文献   

9.
采用共沉淀-高温固相法制备LiNi1/3Mn1/3Co1/3O2正极材料,利用XRD和SEM对所制试样的晶体结构和形貌进行表征,研究了烧结温度对材料电化学性能的影响.结果表明,焙烧温度为850 ℃制备的材料具有较好电化学性能,在25 ℃,电压范围为2.75~4.2 V,1 C充电6 C放电下首次放电比容量为124.2 mAh/g,50次循环后容量保持率为95.2 %.   相似文献   

10.
采用喷雾干燥和高温固相法合成了一系列xLiFePO4·yLi3 V2( PO4)3复合正极材料.电化学测试结果表明,0.95LiFePO4·0.05Li3 V2( PO4)3复合正极材料具有较高的比容量、优良的循环性能和倍率性能,在电压范围为2.0V~4.3V,0.1C,1C,5C条件下的放电容量分别为162.7,147.7和122.3 mAh·g-1.0.5LiFePO4·0.5Li3 V2(PO4)3和0.3LiFePO4·0.7Li3 V2 (PO4)3复合正极材料则表现出了良好的倍率性能,5C,10C充放电条件下容量保持率分别为:77%,73%,88%,82%.  相似文献   

11.
中空结构的V_2O_5材料由于在锂离子嵌入和循环稳定性方面有明显优势,获得了科研人员的特别关注。然而通过简易方法来制备均匀且具有复杂内部结构的V_2O_5中空微米球仍面临挑战。本文首次利用V_2O_5、H_2C_2O_4·2H_2O、H_2O和正丁醇进行溶剂热反应,得到蛋黄结构前躯体,然后将前躯体于空气中烧结,获得均匀的多层V_2O_5核壳结构微米球。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学测试等手段对其进行表征和测试。V_2O_5核壳结构微米球用作锂离子电池正极材料时,在2.5~4 V电压区间、200 mA/g电流密度条件下放电比容量高达122 m Ah/g,循环200圈后容量保持率高达95.9%。该材料优异的电化学性能主要由于结合了低维和三维纳米结构。  相似文献   

12.
分别以石墨烯、科琴黑、乙炔黑为导电剂,研究了采用不同导电剂对Li_3V_2(PO_4)_3锂离子电池电化学性能的影响,获得了性能较佳的科琴黑导电剂;然后改变配比,研究了不同科琴黑配比对电池电化学性能的影响。结果表明:在三种导电剂下,充放电电压范围为3.0~4.3 V,放电倍率为0.2C时,石墨烯、科琴黑、乙炔黑首次放电比容量分别为108、114、104 mAh/g;通过循环性能曲线表明,经过50次循环,放电比容量只发生了微小的变化。改变导电剂的配比,分别是LVP∶PVDF∶导电剂=85∶10∶5、LVP∶PVDF∶导电剂=80∶10∶10以及LVP∶PVDF∶导电剂=75∶10∶15,结果表明:在充放电电压范围为3.0~4.3 V,放电倍率为0.2 C时,三种配比下,首次放电比容量分别为105、114、96 mAh/g,这说明,导电剂的含量也能在一定程度上影响电池的化学性能,导电剂含量不宜过高,也不能过低,含量在10%时,其电化学性能最佳。  相似文献   

13.
采用喷雾干燥-高温固相法合成Li Fe1-xMgxPO4-yFy/C(x=0.02;y=0,0.02)正极材料,并进行了物理性质和电化学性能测试。结果表明,掺杂后的样品均为橄榄石结构,粉末颗粒形貌为多孔状球形。Li Fe_(0.98)Mg_(0.02)PO_(3.98)F_(0.02)/C表现出最好的电化学性能,0.1C首次放电比容量和库伦效率分别为158.9m Ah/g和93.5%;1C放电比容量为145m Ah/g,循环50次后容量保持率为98.9%。与LiFePO_4/C和Li Fe_(0.98)Mg_(0.02)PO_4/C相比,Li Fe0.98Mg_(0.02)PO_(3.98)F_(0.02)/C具有更高的比容量、更稳定的循环性能和更好的倍率性能。  相似文献   

14.
采用二次高温煅烧法制备了三元复合正极材料LiNi0.5Co0.2Mn0.3O2,用SEM、XRD和蓝电测试仪等对其结构和物理化学性能进行表征和测定。结果表明,材料具有较好的层状结构,在2.75~4.25V下0.2C放电容量达到151mAh/g,经50次充放电循环后,放电容量仍为初始放电容量的93%,放电容量保持率较高,是一种电化学性能优良的三元正极复合材料。  相似文献   

15.
采用固相烧结工艺合成了层状高镍无钴正极材料LiNi0.94Mn0.04Al0.02O2(NMA),并研究了不同烧结温度对NMA正极材料的晶体结构、微观形貌和电化学性能的影响。结果表明,当烧结温度过低时,NMA正极材料的结晶度偏低,并在表面形成残锂。烧结温度过高则会导致层状结构变差和电极表面有害副反应增多。在最佳烧结温度750℃下合成的NMA-750材料具有良好的颗粒形貌、最少的锂镍混排和最完整的层状结构,同时具有最佳的电化学性能:首圈放电比容量(3.0~4.5 V,1 C)为199.5 mA·h/g,循环100圈后容量保持率可达79.04%;在5 C下仍具有147.6 mA·h/g的放电比容量,倍率性能优良。  相似文献   

16.
文章主要通过水热法和热处理来获得Na_(0. 7)MnO_2材料。该材料是纳米薄片结构,直径在200~300 nm之间,厚度约为20~30 nm左右。在电化学测试中,500℃的Na_(0. 7)MnO_2在0. 1倍率时首次放电比容量为168. 3 mAh/g,接近Na_(0. 7)MnO_2材料的理论比容量170 mAh/g。循环70圈以后,其放电比容量为161. 1 mAh/g,仅有4. 3%的容量损失,表现了优异的循环性能,且倍率性能较好。可以作为钠离子电池正极材料。  相似文献   

17.
本文主要通过水热法制备了锂离子电池正极材料Li3V2-2x/3Mgx(PO4)3/C,并研究了掺杂金属元素Mg对Li3V2(PO4)3晶体结构和电性能的影响。结果表明,当Mg含量x=0.45(质量分数,下同)时,且在温度为750℃焙烧6 h的条件下所制备的样品具有较好的晶体结构、微观形貌和电化学性能。镁掺杂量在一定范围内变化不会影响磷酸钒锂本身的单斜结构。在3.0~4.8 V、0.1 C倍率下,Li3V1.70Mg0.45(PO4)3/C复合材料首次放电比容量高达154.4 mAh·g-1,首次库伦效率为94.32%,在不同倍率下循环25次之后的容量依然可以达到112.8 mAh·g-1。掺杂镁的样品与未掺杂的样品相比,容量和循环倍率性能均有了很大程度的提高。  相似文献   

18.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

19.
采用共沉淀法先合成[Ni_(0.83)Co_(0.11)Mn_(0.06)](OH)_2前驱体,在纯氧气氛下经过两段高温烧结生成LiNi_(0.83)Co_(0.11)Mn_(0.06)O_2正极材料。通过在前驱体配锂烧结过程中加入纳米TiO_2实现了Ti~(4+)掺杂,经过掺杂后的Li[Ni_(0.83)Co_(0.11)Mn_(0.06)]_(0.98)Ti_(0.02)O_2正极材料在1C电流密度下的放电比容量高达185.6mAh/g,循环100圈后容量维持在178.8mAh/g,容量保持率高达96.33%。  相似文献   

20.
以MnCO_3为Mn源,采用热爆工艺合成LiFePO_4,研究不同添加量的MnCO_3对LiFePO_4性能的影响。结果表明,掺杂量x=0.05时LiFe_(0.95)Mn_(0.05)PO_4衍射峰峰强和半高宽为最佳;SEM测试显示,掺杂产物的颗粒分散最好,颗粒均匀;掺杂产物在0.1 C倍率下的首次充放电比容量分别为154.9 mAh/g和138.5 mAh/g,较纯LiFePO_4的首次充放电比容量有较大提高;在经过50次循环后放电比容量保持率为86.45%,在0.2 C、0.5 C和1 C倍率下的首次放电比容量分别为129 mAh/g、109.4 m Ah/g和86.9 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号