首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对增加钒钛磁铁矿使用比例渣中TiO_2质量分数提高后,对二元碱度以及MgO、TiO_2和Al_2O_3质量分数等对高钛型高炉渣熔化性温度的影响进行了分析。结果表明,在二元碱度为0.9~1.3、MgO质量分数为7.00%~13.00%、TiO_2质量分数为21.00%~25.00%、Al_2O_3质量分数为13.00%~16.00%、其他组元不变的条件下,随着二元碱度、MgO质量分数升高,熔化性温度升高;随着TiO_2质量分数升高,熔化性温度先升高后降低;随着Al_2O_3质量分数升高,炉渣熔化性温度降低。二元碱度可以在较大范围内变化,对炉渣熔化性温度的调控作用最明显;MgO、TiO_2和Al_2O_3的质量分数只能在较小的范围内变化,对炉渣熔化性影响不显著。在渣中TiO_2质量分数为21.00%~25.00%的条件下,炉渣二元碱度不宜超过1.15,三元碱度不宜超过1.60,否则炉渣熔化性温度将显著升高。  相似文献   

2.
为了解决低钛高炉渣资源利用的问题,将低钛高炉渣进行脱硫后配加一定比例的CaO和Al_2O_3制备LF精炼脱硫渣,并采用热力学计算、实验仪器测量和模拟实验等方法对所制备的LF精炼渣的脱硫能力、熔化性能和脱硫效果进行了研究。低碱度(1.8)、低Al_2O_3(10.0%)的LF精炼脱硫渣的硫容量和硫分配比略低Ls,分别为0.0027、10.05。高碱度(≥3.5)、高Al_2O_3(≥15.0%)的LF精炼脱硫渣的硫容量和硫分配比Ls分别在0.0091和268.49以上,并且均具有较为适宜的熔化性能,黏度和熔点分别均在0.120 Pa·S和1517℃以下,满足LF炉精炼的需求。在FeSi或Al脱氧的条件下,钢水的脱硫率和硫分配比分别在51.43~85.54%和9.36~50.33之间,采用低钛高炉渣配加CaO、Al_2O_3制备LF精炼脱硫渣可以取得较好的脱硫效果。  相似文献   

3.
针对增加钒钛磁铁矿使用比例渣中TiO2质量分数提高后,对二元碱度以及MgO、TiO2和Al2O3质量分数等对高钛型高炉渣熔化性温度的影响进行了分析。结果表明,在二元碱度为0.9~1.3、MgO质量分数为7.00%~13.00%、TiO2质量分数为21.00%~25.00%、Al2O3质量分数为13.00%~16.00%、其他组? 槐涞奶跫拢孀哦疃取gO质量分数升高,熔化性温度升高;随着TiO2质量分数升高,熔化性温度先升高后降低;随着Al2O3质量分数升高,炉渣熔化性温度降低。二元碱度可以在较大范围内变化,对炉渣熔化性温度的调控作用最明显;MgO、TiO2和Al2O3的质量分数只能在较小的范围内变化,对炉渣熔化性影响不显著。在渣中TiO2质量分数为21.00%~25.00%的条件下,炉渣二元碱度不宜超过1.15,三元碱度不宜超过1.60,否则炉渣熔化性温度将显著升高。  相似文献   

4.
锰硅合金冶炼采用高Al2O3炉渣的研究   总被引:1,自引:0,他引:1  
孙社成  隆进 《铁合金》1992,(5):8-13
本文介绍了上海铁合金厂冶炼锰硅合金的渣型,并通过大量生产数据的统计分析,探讨了渣中 MnO 含量与炉渣碱度、Al_2O_3含量等因素间的关系。实测了炉渣的熔点、熔化速度和粘度。提出了冶炼锰硅合金的高 Al_2O_3炉渣的渣型是:CaO 23—27%、MgO 6—8%、SiO_2 33—37%、Al_2O_3 18—21%、三元碱度(CaO+MgO)/SiO_2 0.7—0.9、含氟2—3%。  相似文献   

5.
针对国内高炉炼铁原料中Al_2O_3含量不断提高和高炉炉渣中(MgO)/(Al_2O_3)偏高的情况,通过相图分析和对比高(MgO)/(Al_2O_3)和低(MgO)/(Al_2O_3)渣的炉渣粘度和熔化性温度,提出了当高炉采用低(MgO)/(Al_2O_3)渣制度时应采取的冶炼措施。分析表明,炉渣中MgO含量低时,可以通过适当提高二元碱度和炉渣过热度的方法保证炉渣的流动性,但二元碱度不易超过1.25,否则炉渣熔化性温度超过1 380℃,高炉操作抗波动能力下降。  相似文献   

6.
以高炉渣为主要原料,配入Ca(OH)_2、SiO_2、Al_2O_3和TiO_2化学试剂调整炉渣的组成,应用炉渣熔化特性测试仪半球点法,研究了含Al_2O_3 14.6%~17.6%、TiO_2 5%~7%高炉渣的熔化特性。结果表明:随着碱度的升高,炉渣的熔化性温度明显升高;TiO_2含量增加,炉渣的熔化性温度相应降低;适当提高渣中MgO的含量,可避免因Al_2O_3含量升高而引起的熔化性温度上升;炉渣的熔化性温度为1320~1420℃,熔化性良好。  相似文献   

7.
分析了石油套管钢37Mn5的精炼渣碱度w(CaO)/w(SiO_2),Al_2O_3和CaF_2、w(FeO)质量分数对37Mn5钢脱硫效果的影响。结果表明,随渣中w(CaO)/w(SiO_2)增加,脱硫率先增后减;随渣中w(FeO)降低,脱硫率明显增大;随渣中CaF_2质量分数增加,脱硫率先增后减;渣中Al_2O_3含量在9-14%时炉渣脱硫效果较好。实验优化的最佳脱硫渣系组成为(CaO)/w(SiO_2)=2.9-3.2,w(MgO)=5.5%,(FeO+MnO)1%,w(CaF_2)=4%~7%,w(Al_2O_3)=15%。  相似文献   

8.
高炉渣属于多元硅酸盐体系,在高温状态下处于熔融状态,在一定状态下物质的微观结构决定了其宏观性质。综述了高炉渣微观结构的研究现状,并分析了其对炉渣流动性和脱硫能力的影响。高炉渣化学组分主要分为网络形成子与修饰子,网络结构主要由硅氧四面体构成。CaO和MgO为网络修饰子,增加其含量,可使炉渣中自由氧离子浓度提高,降低炉渣中复杂阴离子的聚合度,破坏硅酸盐网络结构,从而炉渣黏度降低;但是碱度或MgO含量过高,也会导致炉渣中高熔点矿物增加,炉渣黏度增大。Al_2O_3、TiO_2根据其含量不同在炉渣中起的作用不同。在一定的含量范围内,Al_2O_3和TiO_2为网络修饰子,起到降低炉渣黏度的作用;随着Al_2O_3和TiO_2含量的增加,两者均会成为网络形成子,使炉渣的黏度增大,流动性变差。随着炉渣碱度或MgO含量的增加,炉渣中复杂离子团受到破坏,炉渣脱硫反应得到提高;但其含量过高时,高熔点物质增多,炉渣流动性变差,脱硫能力降低。通过深入研究高炉渣微观结构,可以更好地理解炉渣化学成分和冶金性能之间的关系,为确定合理的造渣制度提供理论依据。  相似文献   

9.
为明确二元碱度和Al_2O_3对酒钢炉渣冶金性能的影响机理,基于酒钢高炉渣的实际成分,通过粘度实验研究了二元碱度和Al_2O_3对炉渣粘度及熔化性温度的影响。实验结果表明:炉渣粘度随着渣中二元碱度的增大而降低,随着渣中Al_2O_3含量的增加而增大;炉渣的熔化性温度则随着渣中二元碱度和Al_2O_3含量的增加均呈升高的趋势。为保证酒钢炉渣具有良好的流动性,炉渣的二元碱度可控制在1.05~1.10,Al_2O_3含量应控制在8.0%~12.0%。  相似文献   

10.
根据实际高炉炉渣的化学组成,利用FactSage热力学软件结合实验研究对不同组分条件下高炉渣的冶金行为进行探究从而得出二元碱度R_2、w(MgO)/w(Al_2O_3)和Al_2O_3含量对高炉渣熔化温度以及液相生成行为与结晶过程的影响。结果表明:熔渣的开始结晶温度处于液相生成区间即熔化区间内,当R_2在0.9~1.2、w(MgO)/w(Al_2O_3)在0.35~0.60、Al_2O_3质量分数在12%~17%的范围内增加时可促进黄长石的生成而抑制硅灰石和假硅灰石的生成,促进高炉熔渣的液相生成。R_2每增加0.1,熔化终了温度升高约34.3 K;w(MgO)/w(Al_2O_3)每增加0.1,熔化终了温度升高约32.0 K;Al_2O_3质量分数每增加1%,熔化终了温度升高约7.6 K。  相似文献   

11.
为了研究二元碱度、MgO含量和Al_2O_3含量对酒钢高炉炉渣流动性及熔化温度的影响,以酒钢高炉炉渣为基础,运用Factsage热力学软件计算了不同组分炉渣的黏度和熔化温度。根据计算结果,分析了二元碱度、MgO含量和Al_2O_3含量对炉渣黏度和熔化温度的影响规律。结果表明,当前酒钢高炉炉渣化学稳定性良好。为使炉渣具有良好的流动性和熔化温度,酒钢高炉炉渣二元碱度应控制在1.05左右,MgO含量在8%~10%以上较为适宜,Al_2O_3含量应不超过10%。  相似文献   

12.
为降低成本、拓宽矿源,对高炉高铝矿终渣进行了系统研究。通过测定不同组分炉渣黏度和熔化温度,并使用Factsage软件计算相图,得出结果:炉渣温度稳定性随MgO含量和二元碱度的增加而变好、随Al_2O_3含量的增加而变差,其中Al_2O_3含量对炉渣温度稳定性的影响最为显著;相比于MgO和Al_2O_3含量波动,二元碱度波动对炉渣成分稳定性影响最为明显,在高炉冶炼过程中,应严格控制二元碱度波动。  相似文献   

13.
张振峰  吕庆  高峰  李福民  张淑会 《钢铁》2008,43(2):14-17
根据承钢目前高炉的冶炼条件,以现场渣为基准,研究了高TiO2、Al2O3炉渣脱硫能力以及影响脱硫能力的各种因素.结果表明,在承钢炉渣高TiO2、Al2O3条件下,有利于脱硫的炉渣成分为:二元碱度约为1.16,MgO的质量分数约为13%,Al2O3的质量分数控制在12%~13%,同时应尽量降低渣中的TiO2含量.  相似文献   

14.
在实验室条件下,研究高炉渣中MgO及Al2O3质量分数对高炉渣冶金性能的影响规律。试验结果表明,当高炉渣碱度为1.1、MgO质量分数为12%不变时,随着Al2O3质量分数的增加,高炉渣熔化性温度逐渐增加,且当Al2O3质量分数超过17.5%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐增加而渣铁硫分配比降低;当高炉渣碱度为1.1、Al2O3质量分数为20%不变时,随着MgO质量分数的增加,熔化性温度先降低后增加,当MgO质量分数超过11.8%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐降低而渣铁硫分配比增加。  相似文献   

15.
以承钢现场渣为基准,研究了钛、镁、铝对炉渣黏度、熔化性温度和脱硫的影响。研究结果表明:在Ca OAl2O3-Si O2-Mg O-Ti O2五元渣系中,钛、镁、铝对炉渣性能的影响较大。随着Mg O质量分数增加,熔化性温度先降低后升高,黏度呈降低趋势,脱硫能力先升高后降低;随着Al2O3质量分数的增加,熔化性温度先降低后升高,黏度变化复杂,脱硫能力降低;随着Ti O2质量分数的增加,熔化性温度和黏度呈升高趋势,而脱硫能力降低。当炉渣碱度为1.12时,炉渣适宜成分:Mg O质量分数约为13.95%,Al2O3质量分数约为13.75%,Ti O2质量分数控制在10.57%以下。合理控制炉渣中钛、镁、铝的配比,对改善炉渣性能和提高高炉生产有重要意义。  相似文献   

16.
张旭升  吕庆  刘小杰  郄亚娜 《钢铁钒钛》2015,36(1):64-67,91
以宣钢现场渣为基准,研究了中低钛高炉炉渣的脱硫能力。研究结果表明:在CaO-Al2O3-SiO2-MgO-TiO2五元渣系中,碱度、Ti、Mg、Al对炉渣性能的影响较大。炉渣脱硫能力随着碱度的增加呈升高趋势。同一碱度下,TiO2含量的增加,不利于炉渣脱硫。当炉渣碱度为1.1时,炉渣MgO含量控制在10.00%左右,炉渣Al2O3含量控制在12.00%左右,脱硫效果较好;随着渣中Ti含量的升高,适当增加MgO含量,减少Al2O3含量,有利于脱硫反应的进行。合理控制炉渣参数,对降低生铁硫含量,提高炉渣脱硫能力具有重要意义,也为高炉生产提供理论依据。  相似文献   

17.
穆红旺  张淑会  吕庆  孙艳芹 《钢铁》2012,47(6):18-21,50
采用RTW熔体物性测定仪研究了中性气氛条件下高铝中钛型高炉渣的黏度和熔化性温度,得到了碱度和化学成分等因素对其黏度和熔化性温度的影响规律。结果表明:在中性气氛条件下,当炉渣碱度从0.92提高到1.12时,炉渣的黏度降低、熔化性温度升高;随着渣中MgO含量的升高,炉渣的黏度先降低再升高;增加渣中Al2O3含量,炉渣的黏度显著提高。当Al2O3的质量分数大于14.75%后对炉渣黏度的影响不明显;当TiO2的质量分数在10.57%~14.57%范围内增加时,高铝中钛渣的黏度随之降低,即在理想条件下,TiO2含量和温度的增加对炉渣黏度影响均不大。但当高炉冶炼钒钛磁铁矿时,炉渣中的Ti(C,N)等高熔点物质随原料中TiO2含量的增加和炉温的上升而增加,将对炉渣黏度产生很大的影响,故冶炼时应控制高炉内TiO2的还原以少生成高熔点钛化合物,并且严格控制铁水温度以使高炉接受矿石钛含量。  相似文献   

18.
1 前言 近年来,为降低生铁成本,不少企业都希望在保证炉渣脱硫能力的前提下,努力增加高Al_2O_3矿的用量。如宝钢在高炉炉渣的Al_2O_3标准允许的前提下,烧结厂尽可能多使用到岸价格低的澳大利亚矿(属高Al_2O_3  相似文献   

19.
论高钛型炉渣高炉冶炼中TiO2的属性   总被引:6,自引:1,他引:5  
TiO_2属两性氧化物,在高炉渣中TiO_2显酸性,正常高炉冶炼行程其酸性系数必须大于0.60,其还原规律与SiO_2性质相近,在炉内发生渣-焦,渣-铁反应,生成Ti(CN),弥散在渣中,超过一定数量,引起钛渣变稠。随着渣中TiO_2含量增加,L_s下降,熔化性温度升高。因此对攀枝花钒钛磁铁精矿熔剂性的评价,不应忽略占造渣主成份46%的TiO_2,高钛型炉渣应以CaO,MgO,SiO_2,Al_2O_3,TiO_2元成分来衡量碱度。  相似文献   

20.
采用FACTSage 7.0热力学软件计算了中钛高炉渣结晶过程的平衡物相组成,分析了不同化学成分对中钛渣矿物析出过程和矿物组成的影响规律。结果表明,中钛高炉渣冷却过程中析出的物相主要有黄长石、钙钛矿、尖晶石与透辉石。当碱度较低时(R0.93),渣中不存在单独的钙钛矿相。当碱度超过1.03继续增加时,黄长石含量增加,尖晶石含量降低。碱度越高越有利于钙钛矿的形成。随着TiO_2含量的增加,中钛渣中黄长石含量减少而钙钛矿含量增加;并且随着温度的降低,钛元素逐渐富集,最终转移到钙钛矿中。渣中MgO含量或Al_2O_3含量的增加,使得中钛渣矿物析出过程的变得复杂,且影响了钛元素的析出过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号