首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To provide a data base for the regulatory guide of light water reactors, behavior of reactor fuels during off-normal and postulated accident conditions such as reactivity-initiated accident (RIA) is being studied in the Nuclear Safety Research Reactor (NSRR) program of the Japan Atomic Energy Agency (JAEA). The paper presents recent results obtained from the NSRR power burst experiments with high burnup fuels, and discusses effects of pellet expansion as PCMI (Pellet-Cladding Mechanical Interaction) loading and cladding embrittlement primarily due to hydrogen absorption. Results from the recent four experiments on high burnup (about 60 to 78 MWd/kgU) PWR UO2 rods with advanced cladding alloys showed that the fuel rods with improved corrosion resistance have larger safety margin against the PCMI failure than conventional Zircaloy-4 rods. The tests also suggested that the smaller inventory of inter-granular gas in the pellets with the large grain could reduce the fission gas release during the RIA transient; and high burnup structure in pellet periphery (so-called rim structure) does not have strong effect on reduction of the failure threshold because the PCMI load is produced primarily by solid thermal expansion.  相似文献   

2.
In order to obtain high burn-up MOX fuel irradiation performance data, SBR and MIMAS MOX fuel rods with Pufissile enrichment of about 6 wt% have been irradiated in the HBWR. In-pile performance data of MOX have been obtained, and the peak burn-up of MOX pellet have reached to 66 GWd/tM as of October 2004. MOX fuel temperature is confirmed to have no significant difference compared to UO2, if taking into account adequately for thermal conductivity degradation due to PuO2 addition and burn-up development, and measured fuel temperature agrees well with HB-FINE code calculation up to high burn-up region. Fission gas release of MOX is possibly larger than UO2 based on temperature and pressure assessment. No significant difference is confirmed between SBR and MIMAS MOX on FGR behaviour. MOX fuel swelling rate agrees well with solid swelling rate. Cladding elongation data shows onset of PCMI in high power region. Ramp test data from other experiment programs with various types of MOX fabrication route confirms superior PCI resistance of MOX compared to UO2, due to enhanced creep rate of MOX. The irradiation is expected to continue until achieving of 70 GWd/tM (MOX pellet peak).  相似文献   

3.
In-pile experiments of fresh fuel rods under reactivity initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor at the Japan Atomic Energy Research Institute in order to understand the basic pellet cladding mechanical interaction (PCMI) behavior. Rapid fuel pellet expansion due to a power excursion would cause radial and longitudinal deformation of the cladding. This PCMI could be one of the possible incipient failure modes of an embrittled cladding of a high burnup fuel under the RIA conditions.

Basic PCMI behavior was studied by measuring cladding deformation of a fresh fuel rod without complicated irradiation effects. The transient elongation measurements of the fuel with two kinds of gap width indicated not only PCMI-induced cladding elongation, but also reduction of the pellet stack displacement by the cladding constraint. In the tests under a high-pressure and high-temperature condition simulating an operation condition of BWRs, additional ridge-type cladding deformation was generated due to the axial collapse of the cladding. A preliminary analysis for interpretation of the tests was made using a computer code for the transient analysis of fuel rods, FRAP-T6.  相似文献   

4.
For RIA-simulated experiments in the NSRR with high-burnup PWR fuel and BWR fuel, numerical analyses were performed to evaluate the temporal changes of profiles of temperature and thermal stress in pellet induced by pulse power, using the RANNS code. The pre-pulse states of rods were calculated using the fuel performance code FEMAXI-6 along the irradiation histories in commercial reactors and the results were fed to the RANNS analysis as initial conditions of the rod. One-dimensional FEM was applied to the mechanical analysis of the fuel rod, and the calculated cladding permanent strain was compared with the measured value to confirm the validity of the PCMI calculation. The calculated changes in the profiles of temperature and stress in the pellet during an early transient phase were compared with the measured data such as the internal gas pressure rise, cracks and grain structure in the post-test pellet, anddiscussed in terms of PCMI and grain separation. The analyses indicate that the pellet cracking appearances coincided with the calculated tensile stress state and that the compressive thermal stress suppresses the fission gas bubble expansion leading to grain separation.  相似文献   

5.
The nuclear industry strives to reduce the fuel cycle cost, enhance flexibility and improve the reliability of operation. This can be done by both increasing the fuel weight and optimizing rod internal properties that affect operational margins. Further, there is focus on reducing the consequences of fuel failures. To meet these demands Westinghouse has developed ADOPT (Advanced Doped Pellet Technology) UO2 fuel containing additions of chromium and aluminium oxides. This paper presents results from the extensive investigation program which covered examinations of doped and reference standard pellets both in the manufactured and irradiated states.

The additives facilitate pellet densification during sintering and enlarge the pellet grain size. The final manufactured doped pellets reach about 0.5% higher density within a shorter sintering time and a five fold larger grain size compared with standard UO2 fuel pellets. The physical properties of the pellets, including heat capacity, thermal expansion coefficient, melting temperature, thermal diffusivity, have been investigated and differences between the doped and standard UO2 pellets are small.

The in-reactor performance of the ADOPT pellets has been investigated in pool-side and hotcell Post Irradiation Examinations (PIEs), as well as in the Studsvik R2 test reactor. The investigations have identified three areas of improved operational behaviour: Reduced fission gas release, improved PCI performance thanks to increased pellet plasticity and higher resistance against post-failure degradation. Fuel segments have been exposed to ramp tests and enhanced power steady-state operation in the Studsvik R2 reactor after base-irradiation to above 30 MWd/kgU in a commercial BWR. ADOPT reveals up to 50% lower fission gas release than standard UO2 pellets. The fuel degradation behaviour has been studied in two oxidizing tests, a thermal-microbalance test and an erosion test under irradiation. The tests show that ADOPT pellets have a reduced rate of fuel washout, as compared to standard UO2 pellets.

Fuel rods with ADOPT pellets have been irradiated in several light water reactors (LWRs) since 1999, including two full SVEA-96 Optima2 reloads in 2005.  相似文献   

6.
The C3M irradiation test, which was conducted in the experimental fast reactor, “Joyo”, demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, “Monju”. The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and 137Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.  相似文献   

7.
Abstract

Fission gas behavior of UO2 fuel pellets with controlled microstructure irradiated to 23 GWd/t in a test reactor has been studied by using a postirradiation annealing experiment. Four types of fuel pellets with or without additives were examined : (1) un-doped standard (grain size: 16/μm), (2) un-doped large grained (43μm), (3) 0.7 wt% Nb2O5-doped large grained (110/μm), (4) 0.2wt% TiO2-doped large grained (85μm) fuels. The annealing was conducted at 1,600 or 1,800°C for 5 h in reducing or oxidizing atmospheres.

Fission gas release and bubble swelling caused by the high temperature annealing for the two un-doped fuels were reduced to about 1/3–1/2 by increasing the grain size from 16 to 43 μm, which roughly corresponded to the ratio of their grain sizes. By contrast, the performance of the two large grained fuels doped with Nb2O5 or TiO2 was roughly equivalent to, or rather inferior to that of the standard fuel, despite their large grain sizes of 110 and 85 μm. The fission gas behavior of un-doped fuels was aggravated by increasing the oxygen potential in the annealing atmosphere, while that of additive doped fuels did not depend on it. The effects of grain size, additive doping and oxygen potential on fission gas release and bubble swelling were discussed in connection with the diffusivities of fission gas atoms and cation vacancies.  相似文献   

8.
In order to investigate the effect of self-irradiation damage and accumulation of He on oxide fuel pellets containing minor actinides, the expansion and annealing behavior of (Pu0.95Cm0.05)O2 lattice and bulk were examined comparatively. Since the lattice and bulk expansion at room temperature showed a similar dependence on the storage duration, the main factor of bulk expansion was found to be the lattice expansion due to the generation of point defects. The lattice parameter recovered to the undamaged value by annealing at 1429 K for 2 h, whereas the bulk expanded again by annealing at 1433 K and did not recover to the undamaged value. In the micrographs of the fracture surface of the annealed pellet, the formation of gas bubbles along grain boundaries was confirmed. The He gas bubble formation resulted in the pellet swelling, and it may affect the pellet thermal conduction.  相似文献   

9.
ABSTRACT

To contribute to the future updating on the Japanese safety criteria for pellet/cladding mechanical interaction (PCMI) failure of light water reactor fuels under reactivity-initiated accident (RIA) conditions, this paper summarizes the recent important outcomes from research programs with the Nuclear Safety Research Reactor (NSRR). Applicability of current criteria, which are defined as a function of fuel burnup and possibility of introducing another parameter for new criteria were evaluated based on the results of the RIA-simulated pulse irradiation tests, post-test examinations, and supporting analytical work, such as the reevaluation of fuel enthalpies in earlier NSRR experiments. Failure-threshold curves based on cladding hydrogen content as a primary measure of fuel degradation have been proposed as a possible alternative that can be used to judge the occurrence of PCMI failure to ensure conservativeness in a more pertinent manner.  相似文献   

10.
The radial distribution of fission gas (xenon) and other fission products (cesium, ruthenium, cerium) has been measured on UO2 fuel pellets irradiated in commercial pressurized water reactors to burnups between 13.23 and 48.26 GWd/tU. Fission gas release occurs from the pellet center, and at temperatures < 1300° C is confined to the region of grain growth. The maximum fractional release measured at the center ranges from 20% to 30%. Only at high burnup (48.26 GWd/tU) an additional release of cesium has been observed. This is considered as evidence for an increase in fission product release at higher burnups. At fuel center line temperature > 1500° C a high fission gas release is accompanied by a high cesium release. The local release starts at the onset of fission gas bubbles precipitating on grain boundaries and saturates in the center of the pellet at a fractional release value of about 90%.  相似文献   

11.
Heat transfer across a gas gap between a boron carbide pellet and a cladding in FBR control rod has been experimentally investigated. The main purpose of this investigation is to present a calculational method for the gap heat transfer in order to improve accuracy of thermal design for the control rod with 0.5 mm gap width at a beginning of reactor operation.

Two types of tests have been carried out using simulated control rods. One is low temperature tests below 200°C. The test results indicated that the convective heat transfer has a negligible effect on the gap conductance when the Rayleigh number using the gap width as the characteristic length is below 0.1. The other is high temperature tests up to 600°C.

The results showed +10 to — 5% variations in the gap conductance data due to eccentricity between the pellet and the cladding. The prediction based on conduction and radiation heat transfers considering a thermal expansion and an eccentricity gave better results of gap conductance having a maximum difference of only 17% from the measured ones. Calculation in the radiation heat transfer used thermal emissivities. 0.85 for the boron carbide and 0.15 for the cladding, measured by infrared thermography.  相似文献   

12.
Capabilities of the FEMAXI-6 code to analyze the behavior of high burnup MOX fuels in LWRs have been evaluated. Coolant conditions, detailed power histories and specifications of the MIMAS-MOX fuel rods, rod 10 and rod 11, of IFA-597.4–7 irradiated in the Halden reactor were input, and calculated rod internal pressures and pellet center temperatures were compared with the measured data for the range of 0-31 MWd/kgUO2. Some sensitivity studies were conducted mainly with respect to pellet thermal conductivity and swelling rate to investigate the changes in thermal behavior and their effects on fission gas release.

In the irradiation period up to about 23 MWd/kgUO2, the calculated pellet center temperatures sufficiently agreed with the measured data and also the calculated rod internal pressures reproduced the tendency of an increase in the measured rod internal pressures. These results suggest that fission gas release from MOX fuels can be reasonably predicted by a diffusion process that is modeled in UO2 pellet grains. On the other hand, the steep increase in the measured rod internal pressures observed at the power ramp around 23 MWd/kgUO2 cannot be reproduced by FEMAXI-6 and can be regarded as the result of a relatively large amount of gas release, which possibly caused a pellet-cladding-gap closure through pellet gas-bubble swelling.  相似文献   

13.
Power ramp test for He-pressurization effect on fission gas release (FGR) of about 42GWd/tUO2 boiling water reactor (BWR) fuel rods was analyzed by the fuel performance code FEMAXI-7. The experimental data were obtained with the two rods, which were base irradiated in the Halden reactor for 12 years (IFA-409), then subjected to the power ramp tests (IFA-535) to investigate the He-pressurization effect. The FEMAXI-7 calculations were performed by inputting rod specifications and experimental conditions in both the baseand test irradiations. The results showed that the calculations reasonably followed the trends of measured cladding elongation and FGR during the power ramp test, depending on the pellet temperature and fission gas atoms diffusion rate. Based on the calculated results, the reason that no apparent He-pressurization effect was observed in the experiment was considered to be caused by insufficient gas communication during strong pellet–clad mechanical interaction (PCMI) and enhanced gap thermal conductance by the solid–solid contact due to gap closure.  相似文献   

14.
This paper summarizes the present status of a computer code that describes some of the main phenomena occurring in a nuclear fuel rod throughout its life. Temperature distribution, thermal expansion, elastic and plastic strains, creep, mechanical interaction between pellet and cladding, fission gas release, gas mixing, swelling, and densification are modeled. The modular structure of the code allows for the incorporation of models to simulate different phenomena and material properties. Collapsible rods can be also simulated.The code is bidimensional, assumes cylindrical symmetry for the rod and uses the finite element method to integrate the differential equations. The stress–strain and heat conduction problems are nonlinear due to plasticity and to the temperature dependence of the thermal conductivity. The fission gas inventory is calculated with a diffusion model, assuming spherical grains and using a one-dimensional finite element scheme. Pressure increase, swelling and densification are coupled with the stress field.Good results are obtained for the simulation of the irradiation tests of the first argentine prototypes of MOX fuels, where the bamboo effect is clearly observed, and of the FUMEX series for the fuel centerline temperature, the inside rod pressure and the fractional gas release.  相似文献   

15.
Uranium-zirconium hydride fuel properties   总被引:1,自引:0,他引:1  
Properties of the two-phase hydride U0.3ZrH1.6 pertinent to performance as a nuclear fuel for LWRs are reviewed. Much of the available data come from the Space Nuclear Auxiliary Power (SNAP) program of 4 decades ago and from the more restricted data base prepared for the TRIGA research reactors some 3 decades back. Transport, mechanical, thermal and chemical properties are summarized. A principal difference between oxide and hydride fuels is the high thermal conductivity of the latter. This feature greatly decreases the temperature drop over the fuel during operation, thereby reducing the release of fission gases to the fraction due only to recoil. However, very unusual early swelling due to void formation around the uranium particles has been observed in hydride fuels. Avoidance of this source of swelling limits the maximum fuel temperature to ∼650 °C (the design limit recommended by the fuel developer is 750 °C). To satisfy this temperature limitation, the fuel-cladding gap needs to be bonded with a liquid metal instead of helium. Because the former has a thermal conductivity ∼100 times larger than the latter, there is no restriction on gap thickness as there is in helium-bonded fuel rods. This opens the possibility of initial gap sizes large enough to significantly delay the onset of pellet-cladding mechanical interaction (PCMI). The large fission-product swelling rate of hydride fuel (3× that of oxide fuel) requires an initial radial fuel-cladding gap of ∼300 m if PCMI is to be avoided. The liquid-metal bond permits operation of the fuel at current LWR linear-heat-generation rates without exceeding any design constraint. The behavior of hydrogen in the fuel is the source of phenomena during operation that are absent in oxide fuels. Because of the large heat of transport (thermal diffusivity) of H in ZrHx, redistribution of hydrogen in the temperature gradient in the fuel pellet changes the initial H/Zr ratio of 1.6 to ∼1.45 at the center and ∼1.70 at the periphery. Because the density of the hydride decreases with increasing H/Zr ratio, the result of H redistribution is to subject the interior of the pellet to a tensile stress while the outside of the pellet is placed in compression. The resulting stress at the pellet periphery is sufficient to overcome the tensile stress due to thermal expansion in the temperature gradient and to prevent radial cracking that is a characteristic of oxide fuel. Several mechanisms for reduction of the H/Zr ratio during irradiation are identified. The first is transfer of impurity oxygen in the fuel from Zr to rare-earth oxide fission products. The second is the formation of metal hydrides by these same fission products. The third is by loss to the plenum as H2.The review of the fabrication method for the hydride fuel suggests that its production, even on a large scale, may be significantly higher than the cost of oxide fuel fabrication.  相似文献   

16.
The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39 × 1026 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.  相似文献   

17.
18.
Mechanical load on cladding induced by fuel swelling in a high burn-up BWR type rod was analyzed by a fuel performance code FEMAXI-6. The code was developed for the analysis of LWR fuel rod behaviors in normal operation and transient conditions using finite element method (FEM).During a power ramp for the high burn-up rod, instantaneous pellet swelling can significantly exceed the level that is predicted by a “steady-rate” swelling model, causing a large circumferential strain in cladding. This phenomenon was simulated by a new swelling model to take into account the fission gas bubble growth. As a result it was found that the new model can give reasonable predictions on cladding diameter expansion in comparison with PIE data. The bubble growth model assumes that the equilibrium state equation holds for a bubble under external pressure, and simultaneous solution is obtained with both bubble size determination equation and diffusion equation of fission gas atoms. In addition, a pellet-clad bonding model which has been incorporated in the code to assume solid mechanical coupling between pellet outer surface and cladding inner surface predicted the generation of bi-axial stress state in the cladding during ramp.  相似文献   

19.
The codes devised and used in India for the design of fuel for their Pressurized Heavy Water Reactor (PHWR) programme are described. The scheme includes the use of collapsible fuel cladding for improved neutron economy.This code is made with reference to collapsible clad UO2 fuel elements. This evaluates sheath strain and fission gas pressure. The fuel expansion is calculated by a two zone model which assumes that above a certain temperature the UO2 deforms plastically and below that temperature it cracks radially and behaves as an elastic solid; the plastic core is under compression. The pellet clad gap conductance is calculated by using a modified Ross and Stoute model considering the effects of fuel and clad thermal expansion, fission gas release, dilution of filler gas and irradiation swelling. Stress relaxation of the sheath and its effect on fuel sheath contact pressure is also considered for arriving at the end result.  相似文献   

20.
A code for predicting the behavior of non-equilibrium fission gas in oxide fuel elements undergoing fast thermal transients is developed. A new variable, the equilibrium variable (EV), is introduced which, together with bubble radius r, completely specifies a fission gas bubble with respect to its size and equilibrium condition. The code is used to simulate the measurements in two TREAT transients with peak temperatures of 2477 and 2000 K. The computations are in fair agreement with the observations for bubbles smaller than 964 Å in diameter, but not for the larger bubbles. In all simulations, bubbles that grew during the heat-up phase of the transient were found to be “frozen” at a larger than equilibrium size during the cooldown phase of the transient. This phenomenon can significantly affect posttransient swelling and gas release. It is also found that the assumption of equilibrium can introduce considerable error in the computed bubble distribution, swelling and gas release at the end of as well as at post fast thermal transients; for example, the non-equilibrium model releases more gas. The code is also used to simulate the H3 TREAT transient as analyzed by Stahl and Patrician (initial temperature equal to 785 K with a maximum of 2393 K attained in 4.2 seconds, maximum thermal gradient of 10 000 K/cm and grain diameter of 4 to 10 μm) using the ideal gas as well as the Van der Waal's equations of states. The gas inventory at the start of the transient is assumed to be at equilibrium in the smallest radius group (6.2 Å), and the initial bubble concentration is assumed to be 1.2 × 1019/cc. Release rate is found to be strongly dependent upon grain size and initial bubble concentration; a 4 micron diameter grain releases about 95% of the gas retained at the start of the transient, while 6 and 10 micron grains release 68% and 20% respectively. When the initial bubble concentration is reduced by a factor of 16 for the 10 micron grain, fractional release increases to 62%. Gas release is found to result primarily from small bubbles ( ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号