首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
超临界压力下的流体因拟临界点附近物性的剧烈变化,形成了非常奇特的传热现象。因流体密度突变,在低流量下会引起强烈的浮升力作用,对超临界流体的流动和传热均有极大影响。本工作通过实验获得10 mm单管内传热弱化现象的实验数据,并采用改进的低雷诺数湍流模型,使用数值方法模拟该传热弱化现象。计算结果表明,不同于以往传统的模型会高估壁面温度,改进的低雷诺数湍流模型能较好预测实验结果。数值模拟结果还揭示了浮升力对湍流剪切应力和速度分布的影响,进而引起传热弱化和传热恢复。  相似文献   

2.
An experimental study has been conducted to investigate the effect of gas introduction on the heat transfer characteristics for turbulent flow of a heat generating liquid in an adiabatic tube 20 mm in inside diameter. Heat generation within the fluid was brought about by passing an alternating current through the working fluid, which was an aqueous solution of sodium chloride mixed with air bubbles. The superficial liquid Reynolds number ranged 3,700–11,000. The quality was varied from 2.6×10?5 to 3.3×l0?3. Measurements were made of the temperature distributions in the fluid as well as on the tube wall. The experimental results were compared with theoretical analyses.

In bubbly flow; the introduction of air into liquid brought forth a flat temperature distribution due to a considerable increase of turbulence and a saddle-shaped void distribution, which had a maximum near the tube wall. In slug flow, however, the void distribution changed to a dome-shaped profile with a maximum at the tube center and the rate of heat generation was higher near the wall than in the center region, resulting in a steep temperature distribution.  相似文献   

3.
在恒热流加热工况下,对超临界CO2在不同倾角的微细圆管内混合对流换热进行了数值模拟。采用FLUENT软件分析了不同倾角时管内截面温度、轴向速度、二次流、上母线传热系数、周向壁面温度和Nuw的变化规律,并引入相对二次流动能定量表示二次流强度。研究发现:倾斜管内顶部流体温度高于底部,周向Nuw在底部高于顶部,速度分布不是中心对称且其峰值出现在管中心轴线下侧;浮升力引发的二次流先增大后减小,且在靠近入口处达到峰值;倾斜管内上母线温度高于下母线,上母线传热系数在拟临界温度附近达到峰值。通过水平管中浮升力判据,得到了浮升力对对流换热的影响规律。  相似文献   

4.
The effect of a magnetic field on laminar natural convection of liquid metal was studied experimentally using NaK as conducting fluid. The magnetic field was imposed horizontally and parallel to a uniformly heated vertical plate, to act perpendicularly across the convective flow. In a low magnetic field, the temperature profile across the layer of flowing fluid acquired an η-shaped profile characterized by a valley close to the wall and a peak further away, which had the effect of raising heat transfer rate above that obtained in the absence of magnetic field. When the magnetic field was intensified, its braking effect on the flow approached the temperature profile to the case of pure heat conduction through solid, to result in dwindling heat transfer rate.  相似文献   

5.
The water wall is an important part of the passive natural circulation residual heat removal system in a high temperature gas-cooled reactor. The maximum temperatures of the pressure shell and the water wall are calculated using annular vertical closed cavity model. Fine particles can deposit on the water wall due to the thei‘mophoresis effect. This deposit can affect heat transfer. The thermophoretic deposit efficiency is calculated by using Batch and Shen‘s formula fitted for both laminar flow and turbulent flow. The calculated results indicate that natural convection is turbulent in the closed cavity. The transient thermophoretic deposit efficiency rises with the increase of the pressure shell‘s temperature. Its maximum value is 14%.  相似文献   

6.
CFX中湍流模型用于分析超临界水传热的适用性评价   总被引:1,自引:1,他引:0  
通过两组典型实验数据,对商业软件CFX的12种湍流模型用于模拟超临界水竖直向上流动传热的性能进行评价。研究结果表明:强迫对流时,BSL代数应力模型与实验结果符合最好,但各模型间差异均不大;混合对流时,基于壁面函数的ε类型湍流模型不能模拟传热恶化趋势,自动壁面处理的ω类型湍流模型能模拟出传热恶化的趋势,但各模型预测结果和实验结果相差较大。评价结果表明近壁面的处理方式对模拟结果影响很大。此外,基于湍流普朗特数模拟湍流热流密度及未考虑密度脉动对传热的影响均是导致不能正确模拟超临界水传热行为的因素,建议对湍流模型进行改进。  相似文献   

7.
This paper deals with an analysis of heat transfer in laminar flow with uniform internal heat generation in a concentric annulus with uniform but different heat fluxes at the two wall surfaces. The Nusselt numbers at each wall surface are calculated upon analyzing the radial distribution of the fluid temperature.

It is shown that the Nusselt numbers are affected by the ratios of the radii as well as of the wall heat fluxes, and also by the internal heat generation. As a special case, the analytical results of heat transfer in the absence of internal heat generation are compared with Dwyer's and Lundberg, et al.'s theories.  相似文献   

8.
This paper deals with an analysis of heat transfer by slug flow in an annulus with different heat fluxes at the two wall surfaces. The local Nusselt numbers at each wall surface are calculated upon analyzing the radial distribution of the fluid temperature.

The local Nusselt number varies with the ratios of the radii as well as of the wall heat fluxes. The heat transfer in a circular tube and between two parallel plates are also discussed. As a special case, the present results agree very well with Dwyer's obtained for the heat transfer between two wall surfaces.  相似文献   

9.
Natural convection heat transfer in a horizontally placed dry spent-fuel storage cask is numerical investigated. The commercial computational fluid dynamics (CFD) code, -3.2 is used and the laminar and turbulent model are employed. The numerical predictions obtained are compared with the experimental data reported by Nishimura et al. [J. Nucl. Sci. Technol. 33 (1996) 821]. The computational results corresponding to laminar model agree well with the experimental data, but the calculated results of turbulent model are higher. The velocity pattern and the isotherms are drawn. With the increasing of Rayleigh number, the heat transfer in the cask changes from conduction dominant mode to convection dominant mode. In the condition of Ram=1.3×109, turbulent model prevails. The convective heat transfer is so strong that almost all temperature changes take place in the region near the wall of the cask. The Rayleigh number Ram and the Nusselt number Num characterized by maximum temperature difference are defined to depict the heat transfer characteristics. It is found laminar and turbulent models predict the same trend but different value. The flow patterns in the cask can be divided to three regimes. In these three regimes, modified Nusselt numbers are proportional to the 0.7, 0.25 and 0 power of the modified Rayleigh number, respectively.  相似文献   

10.
王畅  高璞珍  许超 《核动力工程》2012,33(4):106-110
对冷却剂平均温度恒定运行模式下矩形窄缝通道内的传热特性进行实验及理论分析。结果表明,在层流区,壁面与流体的传热温差随着雷诺数线性增长,而在紊流区,雷诺数变化对传热温差的影响非常小。通过分析传热机理分别解释了上述现象;出、入口流体温差越大,努赛尔数越小,出、入口流体温差影响换热特性的主要原因是改变了粘性底层中热阻所占的比例。  相似文献   

11.
This paper deals with the problem of heat transfer in fully developed turbulent flow with uniform internal heat generation in a concentric annulus under conditions of uniform but different heat fluxes at the two wall surfaces. The Nusselt numbers at each wall surface are calculated by analyzing the radial distribution of the fluid temperature. We further derive approximate equations, which are found to represent very well the analytical results.

The Nusselt numbers vary with the ratios of the radii of annular space as well as of the wall heat fluxes, as also with internal that generation. These predictions agree well with available experimental data for various fluids.  相似文献   

12.
对超临界压力水在管径为32 mm 3 mm、长度为8 m的水平光管内的流动和传热特性进行数值模拟研究。探讨不同压力、流量、热负荷下管内换热系数的变化特征;重点分析超临界水的交混特性,对比分析流动通道内二次流动的特性及演变规律,进而对二次流动的变化规律给出合理的解释;利用无量纲的Gr/Re2和Gr/Re2.7对交混特性中自然对流与强制对流的相对大小进行定量描述,以解释超临界水在水平管内的流动与换热特征。  相似文献   

13.
An investigation was carried out with the object of determining the physical effects of separation and the associated reattachment and redevelopment, upon the heat transfer characteristics of turbulent flow in pipes and to compare the results of these flow conditions with the fully developed one-dimensional condition and with a recently developed numerical technique for the solution of recirculating flows.

Separation of the flow was induced in a 4 ft length of 2 in. internal diameter nicrome tube of wall thickness 0.001 in. by means of a sudden enlargement of diameter at the entry of the tube. The tube was electrically heated by the passage of a current along its length. The first 25 in. of the tube was metered by thermocouples which gave the wall temperatures and from these the local heat transfer rates and Reynolds numbers up to 5×104 using air as the working fluid.  相似文献   

14.
Four pairs of rectangular block as longitudinal vortex generators (LVG) were mounted periodically in a narrow rectangular channel to investigate fluid flow and convective heat transfer respectively in the narrow rectangular channel with LVG and without LVG. Both the channels have the same narrow gap (d) = 3 mm, the same hydraulic diameter (Dh) = 5.58 mm and the same length to diameter ratio (L/Dh) = 80.65. The experiments were performed with the channels oriented uprightly and uniform heat fluxes applied at the one side of the heating plate and single-phase water was used as test fluid. The parameters that were varied during the experiments included the mass flow rate, inlet liquid temperature, system pressure, and heat flux.In each of the experiments conducted, the temperature of both the liquid and the wall was measured at various locations along the flow direction. Based on the measured temperatures and the overall energy balance across the test section, the heat transfer coefficients for single-phase forced convection have been calculated. At the same time, in these experiments, the single-phase pressure drop across the channels was also measured. The correlations have been developed for mean Nusselt numbers and friction factors. Additionally, the visual experiments of infrared thermo-image recording the temperature on the outer wall of the heating plate have been conducted for validating the effects of LV.In these experimental investigations, both laminar regime and turbulent regime were under the thermo-hydraulic developing conditions, laminar-to-turbulent transition occurred in advance with the help of LV when Reynolds numbers vary between 310 and 4220. In laminar regime, LV causes heat transfer enhancement of about 100.9% and flow resistance increase of only 11.4%. And in turbulent regime, LV causes heat transfer enhancement of above 87.1% and flow resistance increase of 100.3%. As a result, LV can obviously enhance heat transfer of single-phase water, and increase flow resistance mildly.  相似文献   

15.
为准确预测安全壳上封头的自然对流换热特性以保证堆芯余热安全排出,设计了采用底部弧形加热段的矩形封腔自然对流装置,研究导热率对底部弧形加热段和封腔内流体温度分布的影响,并基于开源软件OpenFOAM,采用数值模拟方法对比分析2种湍流模型和3种湍流热通量模型的适用性。结果表明,流体沿弧形面的流动受边界层和绕流脱体强化现象的影响,局部自然对流换热强度从顶部向两端先减小后增大;材料热导率对弧形面的温度分布影响比较大,但对于加热段外的流体温度分布影响极小;经过对AFM模型进行修正,得到了更适用于实验条件的模型参数值,修正后的模型对流体速度场的模拟更为准确且在更高功率工况下也得到验证。本研究可为后续方案设计的有效性评价提供参考。   相似文献   

16.
Numerical study on turbulent mixed convection in inclined plane channels, from 15° to 90° (vertical), was carried out to examine the effect of inclination on fluid flow and heat transfer distributions. The turbulent air flows upward or downward into the duct with one wall heated from bottom. Calculation results with several kinds of k-εtype turbulence models were used to compare the experimental data with those in literatures to determine suitable model. The dependents of Nusselt number on the inclination angle of both the buoyancy-aided and buoyancy-opposed flow are discussed.  相似文献   

17.
低雷诺数条件下超临界压力CO_2换热实验研究   总被引:1,自引:0,他引:1  
在低雷诺数条件下(Rein=1970和750),对超临界压力CO2在垂直圆管(d=2 mm)内向上流动和向下流动时的对流换热进行了实验研究。实验结果表明:当Rein=1970时,在热流密度较高的情况下,在管子的入口处向上流动会出现局部壁面温度峰值和谷值,而在向下流动时未观察到此类似现象;当Rein=750时,向上、向下流动壁面温度的变化趋势和换热规律类似。  相似文献   

18.
超临界蒸发器应用到核电中,可大幅提高机组的热效率。超临界压力流体的热物性在准临界温度附近变化非常剧烈,会对其流动和换热产生很大的影响。研究超临界压力流体在螺旋管内的流动和换热规律,有利于对超临界螺旋管蒸发器的设计。本文采用RNG k-ε和SST k-ω模型对超临界CO2在螺旋管中的流动换热情况进行了数值模拟,发现SST k-ω模型模拟结果与实验结果符合得更好。基于此模型,分析了不同进口质量流速及不同热流密度对管壁温和换热系数的影响,发现随着质量流速的减小、热流密度的增加,峰值向远离hpc的一侧偏移。最后讨论并分析了周向壁温和换热系数的分布情况,发现壁温在φ=315°处最高,需在实验操作或实际运行中加以监控,以保障螺旋管蒸发器的安全运行。  相似文献   

19.
This paper deals with an analysis of flow characteristics and heat transfer of a Bingham plastic fluid in laminar flow through concentric annuli.

The friction factor obtained for a given Hedström number in fully established flow varies with the radius ratios of the annular space and of the bounds of the plug region.

The Nusselt numbers at the two wall surfaces in both fully developed and thermal entrance regions are calculated under the conditions of uniform internal heat generation and uniform but mutually differing heat fluxes at the two wall surfaces. Analytical results show that the Nusselt numbers become negative or infinite under certain thermal conditions at the walls.  相似文献   

20.
对倾斜条件下圆管内强迫流动的传热特性进行实验研究及数值分析。实验结果表明,对于单相流动,在浮力的作用下圆管内的传热呈现非对称状态;圆管上侧传热减弱,壁温升高,而圆管下侧传热增强,壁温降低。数值模拟的结果也是如此。以此为基础,提出引入倾斜条件下传热的修正因子,可以较好地预测倾斜条件下单相对流传热的变化幅度。对两相流动中的汽泡进行受力分析,揭示倾斜条件对两相传热影响不大的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号