首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the ROSA-III test RUN 704 was performed by using the computer codes RELAP4J, RELAP4/MOD6 and RELAP5/MOD0 to verify the predictive capability of the codes for a BWR LOCA. The ROSA-III facility is a volumetrically scaled (1/424) BWR system with an electrically heated core, designed for in tegral LOCA/ECCS tests. The RUN 704 experiment at the ROSA-III test facility simulated a 200% double-ended offset shear break on the inlet side of the pump in the recirculation loop. From present analyses, key parameters which are important to predict major behavior during a BWR large break LOCA have been clarified and the promising predictive capability of the advanced code RELAP5 has been verified.  相似文献   

2.
Similarity of the thermal hydraulic phenomena in a 100% steam line break loss-of-coolant accident (LOCA) between the Rig-of-Safety Assessment (ROSA)-III. Full-Integral Simulation Test (FIST) and a boiling water reactor (BWR)/6 system has been studied experimentally and analytically. The experimental results of ROSA-III (RUN952) and FIST (6MSB1) showed similar LOCA phenomena except for the core cooling. The core cooling was affected by the different ECCS actuation logics used in the tests. The effects of the different test conditions and the system-inherent features on the LOCA phenomena were separately evaluated through the post-test and similarity analysis of the ROSA-III and FIST tests by using RELAP5/MOD1 code with a jet pump model. The similarity of the major events in the ROSA-III and FIST facilities to those of BWR/6 system were confirmed assuming the same ECCS actuation logic and the same sealed initial mass inventory among the three systems. Differences in vessel geometries, metal stored heat and core power curves caused slight differences in the responses of pressure and fuel surface temperatures.  相似文献   

3.
TRACG is a new version of the best estimate BWR transient analysis code, which utilizes a multi-dimensional two-fluid model for the thermal hydraulics and a three-dimensional neutron kinetics model. A three-dimensional neutronics, a fully implicit integration scheme and models for advanced BWR components have been implemented in the code upon TRAC-BF1.

Assessment of TRACG has been performed in this study for the predictive capability of plant transients, which include thermal-hydraulic and neutronic interactions, as affected by responses of the plant control system. Simulations were presented for BWR representative transient tests, which were done as part of a series of BWR5 startup tests. As for the capability to predict thermal hydraulics during the design basis LOCAs, simulations were presented for the LOCA integral tests conducted in the ROSA-III at JAERI and the Hitachi TBL, which had been used for assessment of the TRAC former version.

Consequently, (1)the space-dependent power flow transitions in a BWR were confirmed by TRACG simulations in which the module coupled with neutronics and thermal hydraulics during transients has been newly introduced, and (2) the characteristic thermal-hydraulic phenomena including multi-channel effects during the design basis LOCAs were confirmed, as well as the TRAC former version, by TRACG simulations on which the influence due to a fully implicit integration scheme has not extended. Capability of TRACG to predict BWR transients ranging from simple plant operational transients to design basis LOCAs was successfully demonstrated.  相似文献   

4.
The SAFER03 computer code has a newly developed evaluation model for the analysis of various boiling water reactor (BWR) loss-of-coolant accidents (LOCAs). Analyses of the ROSA-III break area spectrum tests in a recirculation line were performed using the SAFER03 to assess the predictive capability of the code for a BWR LOCA. The ROSA-III test facility at the Japan Atomic Energy Research Institute (JAERI) was constructed to simulate a LOCA in a BWR/6-251 plant with 848 fuel bundles and 24 jet pumps. This paper summarizes the assessment results of SAFER03 which predicted the system responses and key phenomena well and the conservative peak cladding temperature (PCT) for recirculation line break tests with different break areas.  相似文献   

5.
The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR/6) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. Break location effects on thermal-hydraulics during intermediate LOCAs were investigated by using four experiments at the ROSA-III, the 15 and 25% main recirculation pump suction line break (MRPS-B) experiments, the 21% single-ended jet pump drive line break (JPD-B) experiment and the 15% main steam line break (MSL-B) experiment. Water injection from the high pressure core spray (HPCS) was not used in any of the experiments. Failure of ECCS actuation by the high containment pressure was also assumed in the tests.

In the MRPS-B experiments, the discharge flow turned from low quality fluid to high quality fluid when the downcomer water level dropped to the main recirculation line outlet elevation, which suppressed coolant loss from the vessel and the core. In the JPD-B experiment, the jet pump drive nozzle was covered with low quality fluid and low quality fluid discharge continued even after the downcomer water level reached the jet pump suction elevation. Low quality fluid discharge ceased after the ADS actuation. It suggestes that the JPD-B LOCA has the possibility of causing larger and more severe core dryout and cladding temperature excursion than the MRPS-B LOCA. The MSL-B LOCA was characterized by mixture level swell in the downcomer and the core. The core mixture level swell resulted in the much later core dryout initiation than that in the MRPS-B LOCA, however, ECCS actuation was also delayed because of slow downcomer water level drop.  相似文献   

6.
The ROSA (Rig of Safety Assessment)-III facility is a volumetrically scaled (1/424) simulated boiling water nuclear reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. A recirculation pump suction line break test with a five percent break area was conducted with the assumption of high pressure core spray system (HPCS) failure. The simulated peripheral fuel rods facing the channel box wall had a tendency to be rewetted temporarily at the upper part of the core by falling water from the upper plenum before low pressure core spray system (LPCS) actuation, while the rods in the central region were not rewetted but quenched mainly from the bottom of the core after low pressure coolant injection system (LPCI) actuation. Therefore, the peak cladding temperatures of the simulated high power fuel rods were limited to lower values since they were located in the peripheral region and the temporary rewetting before LPCS actuation occurred mainly in the peripheral region. The ROSA-III five percent break test and a BWR counterpart were analyzed with the RELAP5/MOD1 (cycle 018) code. Similarity between the ROSA-III small break test and a BWR small break LOCA has been confirmed through comparison of the calculated results.  相似文献   

7.
The safety research for BWRs has been positively done by the JAERI, Japanese BWR utilities and BWR vendors in this decade and has shown the important phenomena under BWR LOCA conditions. Based on these significant results, the SAFER03 computer code was jointly developed by Toshiba, Hitachi and General Electric. SAFER03 has been qualified against the BWR simulation test data obtained from TBL, ROSA-III and FIST-ABWR test facilities. The objectives of this study are to assess the predictive capability of SAFER03 code to simulate the significant LOCA phenomena and to catch key parameters during BWR LOCA. This paper summarized the results of these SAFER03 assessments and showed that SAFER03 could predict the realistic behavior of BWR LOCA with slight conservative peak cladding temperatures.  相似文献   

8.
In the last decade, a large number of experiments have been performed in order to understand the thermal-hydraulic response in a boiling water reactor (BWR) under postulated loss of coolant accident (LOCA) conditions. These experimental results showed that the core cooling effect under the LOCA conditions was significantly affected by three-dimensional and multi-bundle phenomena after emergency core cooling systems (ECCSs) started. Also, the peak cladding temperature (PCT) during the LOCA was kept below a specific value of the licensing acceptance criteria, 1473 K (1200°C). These key results of the experiments were incorporated into a computer code, SAFER, which was developed for the BWR LOCA/ECCS analyses under the cooperative studies of Hitachi Ltd, Toshiba Co., and General Electric Co. (GE).

In a couple of years, the experimental study of multi-bundle phenomena was extended into the area of off-normal and non-LOCA transients. Thermal-hydraulic responses during boiling transition were studied using the TBL (Two Bundle Loop) test facility with two full-length bundles. The experimental results showed that interaction and feedback effects between the bundles were expected to be unaffected by core cooling during the typical off-normal and non-LOCA transients. Also, the SAFER showed good predictions for hydraulic responses in the bundles and temperature transients of the rod surfaces.  相似文献   


9.
Two simulation tests for a boiling water reactor large loss-of-coolant accident (LOCA), conducted in the two bundle loop, were analyzed using the current licensing code system. These tests were recirculation-pump suction-line double-ended break tests. One of these tests assumed failures for LPCS and 1 out of 3 LPCIs, and another test assumed HPCS failure. A main objective of these analyses is to confirm the conservativeness of the licensing analysis models. Conclusions reached from the analyses are as follows:

1. Calculated heater surface temperature begins to rise much earlier than the measured temperature, due to the conservative GEXL model for a LOCA analysis.

2. Calculated heat up rate is higher than the test data, mainly due to neglecting the steam cooling in the analysis.

3. Calculated heater rewetting time is later than the test data, due to neglect of counter current flow limiting at the core inlet, when the measured ECCS flow rate is used in the analysis.

It has been confirmed that the current licensing analysis models give a conservative result for peak cladding temperature (PCT), due to the model conservativeness factors presented above, when the measured data are used in the analysis for the outflow from the system and the inflow to the system.  相似文献   

10.
Simulation tests of a BWR LOCA were conducted with a Two Bundle Loop (TBL). Japanese BWR utilities, Toshiba Corp. and Hitachi Ltd. have jointly performed the SAFER03 and TRAC-BD1 code analyses with the TBL test data. The objective of this study is to demonstrate the predictive capability of SAFER03 and TRAC-BD1 for a BWR LOCA. This paper summarizes the results of the analysis in which SAFER03 and TRAC-BD1 predicted the system responses and key phenomena well and a conservative peak cladding temperature of SAFER03 was obtained.  相似文献   

11.
The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR/6) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. Seven recirculation pump suction line break LOCA experiments were conducted at the ROSA-III facility in order to examine the effect of the initial stored heat of a fuel rod on the peak cladding temperature (PCT). The break size was changed from 200% to 5% in the test series and a failure of a high pressure core spray (HPCS) diesel generator was assumed. Three power curves which represented conservative, realistic and zero initial stored heat, respectively, were used.In a large break LOCA such as 200% or 50% breaks, the initial stored heat in a fuel rod has a large effect on the cladding surface temperature because core uncovery occurs before all the initial stored heat is released, whereas in a small break LOCA such as a 5% break little effect is observed because core uncovery occurs after the initial stored heat is released. The maximum PCTs for the conservative initial stored heat case was 925 K, obtained in the 50% break experiment, and that for the realistic initial stored heat case was 835 K, obtained in the 5% break experiment.  相似文献   

12.
The ROSA-111 test facility is a 1/424-th volumetrically scaled BWR/6 simulator with an electrically heated core to study the thermal-hydraulic response during a postulated loss-of-coolant accident (LOCA). Heat transfer analyses for 5, 15, 50 and 200% break tests were conducted to understand the basic heat transfer behavior in the core under BWR LOCA conditions and to obtain a data base of post-critical heat flux (CHF) heat transfer coefficients and quench temperature. The results show that the convective heat transfer coefficient of dried-out rods at the core midplane during a steam cooling period is less than approximately 120 W/m2K. It is larger than existing data measured at lower pressures during a spray cooling period. Bottom-up quench temperatures are given by a simple equation: the sum of the saturation temperature and a constant of 262 K. Then the heat transfer model in the RELAP4/MODE/U4/J3 code was revised using the present results. The rod surface temperature behavior in the 200% break test was calculated better by using the revised model although the model is very simple.  相似文献   

13.
The Japan Atomic Energy Research Institute performed a 2.8% recirculation pump suction line break BWR LOCA test at the ROSA-III test facility. The test was a counterpart test to the 2.8% break test performed at the FIST test facility by the General Electric Company. The objective of the test was to develop a common understanding and interpretation of the controlling phenomena for a small break LOCA of a BWR. Similar phenomena were observed in the two tests in a similar time sequence and with magnitudes. These two test results and a 2.8% break reference BWR LOCA were analyzed using the THYDE-B1 computer code. It was confirmed from the analysis that the THYDE-B1 code has enough capability to analyze a BWR small break LOCA. The applicability of the tests performed at the two facilities to a BWR was also confirmed through the analyses.  相似文献   

14.
The ROSA-III test facility is a volumetrically scaled ( ) BWR/6 system with an electrically heated core to study the thermal-hydraulic response during a postulated loss-of-coolant accident (LOCA).Six loss-of-coolant experiments with a break area of 15%, 50% or 200% at the main recirculation pump inlet line were conducted at the ROSA-III test facility with a high pressure core spray failure. A sharp-edged orifice or a long throat nozzle was used as a break plane. It was found in the experiments that the break flow differences between the orifice and the nozzle break configurations with the same flow area were observed only in the subcooled break flow region. Subcooled break flow rate through the orifice was much larger than that through the nozzle. The break configuration difference had little influence on the other system responses, especially on the peak cladding temperature. The applicability of the test results to a BWR/6 has been confirmed through analyses of the 15% break ROSA-III LOCA experiments and BWR/6 LOCAs by using RELAP4/MOD6/U4/J3 code. The experimental results of the ROSA-III LOCA experiments were calculated well by the code, and the same trends were calculated in the BWR analyses.  相似文献   

15.
严重事故下核电站安全壳内氢气分布及控制分析   总被引:2,自引:1,他引:2  
使用安全壳分析程序CONTAIN计算分析了百万千瓦级压水堆核电站严重事故下安全壳内的氢气浓度分布.分别对一回路冷段大破口失水(LB-LOCA)叠加应急堆芯冷却系统(ECCS)失效(不包括非能动的安注箱)事故和全厂断电(SBO)叠加汽轮机驱动的应急给水泵失效事故两个严重事故序列进行了计算.计算结果表明,不同严重事故下,安全壳各隔间对氢气控制系统的要求不同.氢气控制系统的设计必须满足不同事故下的法规要求,提高电站的安全性.  相似文献   

16.
先进压水堆的一个显著特点是非能动系统的高可靠性,评价这些系统的运行特性以及系统分析程序(如RELAP5等)的计算能力是非常重要的,中国核动力研究设计院设计建造了原理性的非能动堆芯应急冷却系统实验装置,并完成了相关实验研究,取得一批有价值的数据,本文用RELAP5/MOD3.2程序对实验过程进行了模拟分析。通过计算结果与实验结果的比较,初步评价了RELAP5/MOD3.2程序的计算能力。  相似文献   

17.
The ECCS performance, which mitigates a postulated catastrophic failure of the main reactor coolant piping during the full power operation, is judged to cover the consequences of LOCA occurring in other plant operational states. During Mode 3 with an accumulator isolated and Mode 4, since the normal alignment of ECCS equipments is changed from that which is available during the power operation, a potential safety issue, which involved the performance of ECCS for LOCA during Mode 3 with the accumulator isolated and Mode 4, was identified in 1985. This study is performed as the plant specific shutdown LOCA program for the power uprated Kori-3 and 4, of which the nominal core power is planned to increase by 4.5%. We determine and verify the operator action time to initiate SI following a small break LOCA in order that the peak clad temperature of fuel does not exceed the 10CFR50.46 limit of 1,477.6 K.

We evaluate the 0.1524 m (6 inches) pipe break in the cold leg to develop the SI initiation time. There is a considerable margin to the 10CFR50.46 limit of 1,477.6 K in the case that the SI is manually initiated at 25 min after an operator identifies the symptom of a small break LOCA. However, in respect of the safe plant operation, we decide the operator SI initiation time as 15 min in order that the SI water is supplied to prevent the fuel heat-up during the blowdown phase of a small break LOCA. After then, we evaluate the applicability of the pre-determined SI initiation time to other small break LOCAs, which have a smaller break size, a lower initial decay heat level or a different break location. Since the peak clad temperatures of applicability evaluation cases are lower than those of the umbrella case, we confirm that the pre-determined SI initiation time can be applied to mitigate the small break LOCAs during the plant shutdown operation. The SI initiation time developed in this study will be used in the Abnormal Operating Procedure of the power uprated Kori-3 and 4 for the small break LOCAs during the plant shutdown operation.  相似文献   

18.
A large break test in a recirculation pump suction line with the assumption of LPCI-diesel generator failure was conducted at the ROSA-III test facility of Japan Atomic Energy Research Institute. A counterpart test was also performed at the FIST test facility of General Electric Company. The objective of the tests was to develop common understanding and interpretation of the controlling thermal-hydraulic phenomena during a large break LOCA of a BWR. The fundamental thermal-hydraulic phenomena in the ROSA-III and FIST tests such as the system pressure, mixture level and fuel rod surface temperatures agreed well. The FIST test had more bundle uncovery than that in ROSA-III since lower plenum steam in the FIST test flowed out of the jet pumps when they uncovered allowing more liquid to drain from the bundle. The ROSA-III and FIST tests and a BWR counterpart were analyzed with the RELAP5/MODI (cycle 018) code. The similarity of the ROSA-III and FIST large break tests to a BWR large break LOCA has been confirmed through comparison of calculated results though they are slightly different in details. It is perhaps desirable to reexamine the DNB and interphase drag correlations and the jet pump models usedin the code.  相似文献   

19.
大破口失水事故(LBLOCA)是决定核电站运行功率的设计基准事故之一,本文利用最佳估算系统分析程序RELAP5/MOD3,通过修改其相关模型或关系式,结合有关分离效应与整体效应试验数据验证,形成满足10CFR50附录K中保守评价模型要求的LOCA分析工具——先进程序+保守评价模型程序及分析方法。在此工具与方法开发基础上,对300MW压水堆核电站进行了一回路冷管段双端剪切断裂LBLOCA计算分析,计算的包壳峰值温度(PCT)与应急堆芯冷却系统(ECCS)验收准则及相应最终安全分析报告对比表明:应用该工具与分析方法,可望获得进一步的PCT裕量。  相似文献   

20.
Iodine removal tests for a BWR containment spray were carried out with large-scale JAERI Model Containment Test Facility under LOCA simulated conditions. The tests consisted of two groups: “gas-phase based” tests mainly to obtain the initial iodine removal rate by the spray and “liquid-phase based” tests to obtain the iodine partition coefficient at equilibrium state. It was shown that the degree of iodine removal was largely influenced by pH-value of spray water. The results were discussed with calculated results by a code MIRA-PB using a dose reduction factor for the airborne iodine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号