首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
Abstract

The behavior of neutrons in a highly heterogeneous unit cell consisting of D2O moderator, H2O coolant and a 28-pin fuel cluster contained in a pressure tube has been studied through lattice parameter measurements covering three different 235U enrichments, four coolant void fractions and two lattice pitches. A single-region core configuration was adopted, with which measurements were made to determine—in relation to coolant void fraction—the critical D2O level, as well as various lattice parameters

A strong dependence on coolant void was observed for the critical level and the lattice parameters, in the case of the smaller 22.5 cm pitch lattice, due to the positive effect on core reactivity exerted by the slowing-down faculty of H2O in the epithermal energy region. With the larger 25.0 cm pitch, however, no meaningful dependence on void fraction was shown by any of the measured values, and this was ascribed to a compensating negative effect due to enhanced thermal neutron self-shielding in the fuel region produced by the H2O coolant.

The results of cell calculations obtained by means of the METHUSELAH-II code showed generally good agreement with experimentally determined data, for both critical D2O levels and lattice parameters, in the case of coolant-filled lattices (0, 30 and 70% void fractions). For lattices devoid of coolant (100% void fraction), however, discrepancies in lattice parameters—particularly in p 28—produced corresponding deviations in core reactivity amounting to 1% in excess of those incurred with other void fractions.  相似文献   

2.
An inherently safe core concept with metallic fuel for sodium cooled fast reactor is proposed that has a negative void reactivity at the loss of coolant events without scram as well as a small excess reactivity during the operation cycle. The relationship of sodium void reactivities and burn-up reactivities to different core configurations has been studied quantitatively to clarify the core concept for large metallic fuel reactors. It has shown that the sodium void reactivity is greatly dependent on the core shapes while the excess reactivity is on the fuel compositions. It has also indicated that the core configuration that enables to enhance the neutron streaming through the region above the active core at coolant voiding is most effective to decrease sodium void reactivity.

A 3000 MWt core composed of the flat inner core and annular outer core where the fuel volume fraction is relatively high and the sodium plenum is placed just above the active core region has been selected as a candidate core.

The maximum excess reactivity of the candidate core at UTOP is about 0.4 $ and it can be reduced to approximately zero by power or inlet temperature adjustment during the operation cycle, meanwhile the sodium void reactivity is as low as -1.3 $ in negative that is enough to prevent ULOF sequences.  相似文献   


3.
To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up,a tight ptich lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors.It is shown that the high conversion ratio and negative coolant void reactivity coefficient are challenges in the reactor core physics designs.Various techniques were proposed to solve these problems.In this work.a tight pitch lattice and mixed fuel assemblies pressured heavy water reactor concept was investigated.BY utilizing numerical simulation technique,it is demonstrated that reactor core mixed with Pu/U and Th/U assemblies can achieve high conversion ratio(0.98) ,long burn-up(60GWD/t)and negative void reactivity coefficients.  相似文献   

4.
A scheme for circulating coolant and cooling the core that has advantages over the designs of similar nuclear power systems is proposed for light-water reactors with supercritical coolant parameters and a fast-resonance neutron spectrum. A negative void coefficient of reactivity is obtained for the entire run of a fuel assembly without building a blanket. A more uniform distribution of the energy release over the core volume is achieved without using complicated fuel-enrichment schemes. The nonuniformity of the coolant temperature distribution at the core exit is decreased. The fuel assemblies operate with a much lower temperature drop over the core height. The core has a small reactivity excess on burnup and a BR of about 1, for which the most difficult operating regimes (flooding with cold water) can be handled with standard means (placement of absorbing organs of the safety and control system in ∼2/3 of the fuel assemblies). __________ Translated from Atomnaya énergiya, Vol. 100, No. 5, pp. 349–356, May, 2006.  相似文献   

5.
《Annals of Nuclear Energy》1999,26(17):1517-1535
The sensitivity of various safety parameters, affecting the reactivity insertion limits imposed by clad melting temperature for a typical pool type research reactor, have been investigated in this work. The analysis was done for low enriched uranium (LEU) core with scram disabled conditions. The temperature coefficients of fuel and coolant, void/density coefficient and βeff were individually varied and the reactor behavior for different ramp reactivity transients was studied. In this work ramp reactivity insertions from 1.6 to 2 $/0.5 s were selected and peak power, maximum fuel, clad and coolant temperatures were determined. Results show that peak power decreases with an increase in the Doppler coefficient of reactivity. However, it rises with an increase in the reactivity insertion. Core remains insensitive to the coolant temperature coefficient of reactivity for ramps in the range of 1.6–1.9/0.5 s. Peak power decreases with an increase in the void coefficient of reactivity (0.1 $/%void to 0.8 $/%void). With a decrease in the void coefficient of reactivity, the maximum fuel and clad temperatures show a non-linear rise. Power and temperature peaks in the transient are sensitive to the values of βeff. Finally, it can be concluded that LEU is a safe core due to its smaller βeff, larger Doppler coefficient and void coefficient of reactivity. It is inferred through this work that reactivity insertion limits of LEU core are quite insensitive to βeff, the Doppler coefficient and the coolant temperature coefficient of reactivity. They are highly sensitive to the change of the void coefficient of reactivity in the core.  相似文献   

6.
Conceptual design of a Small-sized Reduced-Moderation Water Reactor (S-RMWR) core, which has the thermal output of 180 MW, the conversion ratio of 1.0 and the void reactivity coefficient of negative value, has been constructed. S-RMWR is a technology demonstration reactor which also conducts material and fuel testing for commercial use of Reduced-Moderation Water Reactor (RMWR) in large-scale power plants. It has a very tight triangular fuel rod lattice and a high coolant void fraction. The RMWR core axially has two short and flat uranium plutonium mixed oxide (MOX) regions with an internal blanket region in between, in order to avoid a positive void reactivity coefficient. The MOX regions are sandwiched between upper and lower blanket regions, in order to increase a conversion ratio.

In this small reactor core, leakage of neutrons is expected to be larger than in a large core. Therefore, a core design concept different from that for a large core is necessary. Core burnup calculations and nuclear and thermal-hydraulic coupled calculations were performed in the present study with SRAC and MOSRA codes. MVP code was also used to obtain control rod worth. Because of its large neutron leakage, keeping the void reactivity coefficient negative is easier for S-RMWR than RMWR. Thus, the heights of MOX region can be taller and the plutonium enrichment can be lower than in RMWR. On the other hand, to achieve the conversion ratio of 1.0, radial blanket and stainless steel reflector assemblies are necessary, whereas they are not needed for RMWR.  相似文献   

7.
Design parameters of heavy water (D2O) cooled thorium breeder reactors for actinides closed-cycle cases have been investigated to find a design feasible area of breeding and negative void reactivity. Heavy metals (HMs) closed-cycle shows narrower feasible area compared with feasible area of 233U closed-cycle. In thorium fuel cycle, the breeding capability of the reactors becomes worse when all HMs are recycled. The result shows an opposite profile of breeding capability compared with uranium fuel cycle which obtains higher breeding capability when more HMs are recycled. Feasible design area which has a breeding and negative void reactivity can be estimated for higher burnup, even higher than 60 GW d/t for 233U closed-cycle; however, it is limited to 36 GW d/t for HM closed-cycle. Contribution of capture 235U is more significant to reduce breeding capability and contribution of 234U is also more effective to make the reactor more positive or less negative void coefficient for HM closed-cycle case in thorium fuel cycle system.  相似文献   

8.
CRIEPI and Toshiba Corp. have been exploring to realize a small-sized nuclear reactor for the needs of dispersed energy source and multi-purpose reactor. A conceptual design of 4S (Super-Safe, Small and Simple) reactor is proposed to meet the following design requirements: (1) All temperature feedback reactivity coefficients including whole core sodium void reactivity are negative; (2) The core integrity is secured against all anticipated transient without reactor scram; (3) No emergency power nor active mitigating system is required; (4) The reactivity core lifetime is more than 10 years. The 4S reactor is a metallic fueled sodium cooled fast reactor. A target of an electrical output is 10–50 MW. A remarkable feature of 4S is that its reactivity is not controlled by neutron absorber rods but by neutron reflectors to cope with a long core lifetime and a negative coolant void reactivity.

This study includes a design consideration of 4S. Design discussions are mainly focused on various core designs to meet above requirements. A tall core active height is adopted to gain long core lifetime. An averaged fuel burn-up is tried to be increased up to 100 GWd/ton from a point of economic view. The reference 4S designs are 10 MWe (30 years core lifetime) and 50 MWe (10 years core lifetime).  相似文献   


9.
This research is focused on using Thorium-Plutonium MOX fuel in the inner fuel pins of the CANDU fuel bundles for plutonium incineration and reduction of uranium demand and to reduce coolant void reactivity. The delayed neutron fraction and the power distribution amongst the fuel elements of the fuel bundle have been considered as main safety parameters.The 700 MWe Advanced CANDU Reactor (ACR-700) was selected as a case study. The inner eight UO2 fuel pins of the ACR-700 fuel bundle are replaced by Thorium-Plutonium MOX fuel pins in the proposed design with 3% reactor grade PuO2. This amount represents 23.4 w/o of the fuel in the bundle. The outer two fuel rings (35 pins) enrichment is reduced from 2.1 w/o U-235 to 2 w/o U-235. The simulation using MCNP6 showed that about 27% reduction of uranium demand can be achieved. The proposed fuel bundle eliminate the use of burnable poisons in the central pin that was used for negative coolant void reactivity and more reduction in the coolant void reactivity was achieved (about 3.5 mk less than the reference fuel bundle). The power distribution throughout the fuel bundle is more flat in the proposed fuel bundle. Use of this fuel bundle reduces the delayed neutron fraction from 540 pcm in the reference case to 480 pcm in the proposed case.  相似文献   

10.
The conceptual design of the advanced high-temperature reactor (AHTR) has recently been proposed by the Oak Ridge National Laboratory, with the intention to provide and alternative energy source for very high temperature applications. In the present study, we focused on the analyses of the reactivity coefficients of the AHTR core fueled with two types of fuel: enriched uranium and plutonium from the reprocessing of light water reactors irradiated fuel. More precisely, we investigated the influence of the outer graphite reflectors on the multiplication factor of the core, the fuel and moderator temperature reactivity coefficients and the void reactivity coefficient for five different molten salts: NaF, BeF2, LiF, ZrF4 and Li2BeF4 eutectic. In order to better illustrate the behavior of the previous parameters for different core configurations, we evaluated the moderating ratio of the molten salts and the absorption rate of the key fuel nuclides, which, of course, are driven by the neutron spectrum. The results show that the fuel and moderator temperature reactivity coefficients are always negative, whereas the void reactivity coefficient can be set negative provided that the fuel to moderator ratio is optimized (the core is undermoderated) and the moderating ratio of the coolant is large.  相似文献   

11.
The void coefficients of the reactivity of different channel-type power reactors are compared. It is shown that a heavy-water channel reactor operating in a self-fueling regime within a uranium–thorium fuel cycle is just as nuclear-safe as CANDU type reactors. When composite fuel assemblies containing fuel elements with fuel and a ThO2 target are used, such a reactor possesses negative void and therefore power coefficient of reactivity. Consequently, its nuclear safety is substantially higher than that of channel power reactors cooled by heavy or light water. Translated from Atomnaya énergiya, Vol. 105, No. 5, pp. 249–254, November, 2008.  相似文献   

12.
Core-average Doppler and coolant void reactivity coefficients, as well as the kinetic parameters (βeff and Λ), have been determined for sub-critical accelerator-driven systems employing lead–bismuth eutectic (LBE) and helium gas coolants. To determine these parameters use is made of the standard procedure for analyzing critical reactors, which is based on “perturbation-theory” (PT), while in addition two dedicated methodologies for sub-critical systems, i.e. “inhomogeneous perturbation-theory” (IPT) and “heuristically based generalized perturbation-theory” (HGPT), have been employed to compute these parameters in a more rigorous manner.The two methods (PT and IPT/HGPT) are found to give similar results for each application and despite a smaller target keff-value, the sensitivity of the method is small in the case of the gas-cooled system, thus confirming the adequacy of the standard procedure. As regards the coolant void reactivity coefficient in the gas-cooled ADS, this finding can mostly be attributed to the fact that the core is always transparent with respect to the source neutrons, irrespective of the specific helium content.The sensitivity of the Doppler coefficient is also rather low in the case of the LBE cooled system. However, the dedicated methods are needed for the correct prediction of the coolant void reactivity coefficient, especially if minor actinides are introduced into the core. More important, in this case, is the fact that the PT-approach does not produce conservative results. Finally the sensitivity of the reactivity and kinetic parameters to the different methods is of the same order as that due to uncertainties in nuclear data and therefore these will need to be included in any overall evaluation of the impact of uncertainties on steady-state and transient ADS performance.  相似文献   

13.
基于传统压水堆(PWR)技术,提出一种重水冷却的钍基长寿命模块化小堆(RMSMR)的概念设计方案,采用二维模型系统分析并对比了PWR和RMSMR的燃料类型、慢化剂类型等参数,获得反应堆各项中子学参数的变化机理;然后基于二维计算结果提出了最终的三维堆芯设计方案,并开展了初步的中子物理和热工安全分析。研究表明,RMSMR在设计上采用三区燃料布置来展平功率,采用钍-铀燃料维持了负空泡系数,通过布置增殖包层提高了堆芯的转换比(CR);RMSMR采用了重水冷却剂可以使中子能谱硬化,从而提高CR,减小寿期反应性波动,增加堆芯寿期;RMSMR能够在100 MW电功率下维持6 a的安全运行。本文研究可为新型反应堆的设计发展提供借鉴。  相似文献   

14.
在中国实验快堆(CEFR)物理启动过程中,对CEFR压力反应性和流量反应性效应进行了测量研究,并进行初步的误差分析。实验中堆芯反应性测量分别使用周期法和逆动态法。实验结果表明:CEFR压力反应性为正反馈,主容器覆盖气体压力从5 kPa升高至50 kPa过程中引入约+20 pcm反应性,升、降压力过程测量结果的相对偏差小于10%;CEFR流量反应性为负反馈,一回路泵转速从150 r/min升高至989 r/min过程中引入约-49 pcm反应性,升、降流量过程测量结果的相对偏差小于10%。周期法和逆动态法的测量结果符合较好。初步误差分析的结果表明,实验结果的测量精度主要由冷却剂温度测量的精度决定。  相似文献   

15.
A number of approaches were explored for improving characteristics of the encapsulated nuclear heat source (ENHS) reactor and its fuel cycle, including: increasing the ENHS module power, power density and the specific power, making the core design insensitive to the actinides composition variation with number of fuel recycling and reducing the positive void coefficient of reactivity. Design innovations examined for power increase include intermediate heat exchanger (IHX) design optimization, riser diameter optimization, introducing a flow partition inside the riser, increasing the cooling time of the LWR discharged TRU, increasing the minor actinides' concentration in the loaded fuel and split-enrichment for power flattening. Another design innovation described utilizes a unique synergism between the use of MA and the design of reduced power ENHS cores.

Also described is a radically different ENHS reactor concept that has a solid core from which heat pipes transport the fission power to a coolant circulating around the reflector. Promising features of this design concept include enhanced decay heat removal capability; no positive void reactivity coefficient; no direct contact between the fuel clad and the coolant; a core that is more robust for transportation; higher coolant temperature potentially offering higher energy conversion efficiency and hydrogen production capability.  相似文献   


16.
《Annals of Nuclear Energy》1999,26(16):1423-1436
A high-temperature large fast reactor cooled by supercritical water (SCFR-H) is designed for assessing its technical feasibility and potential economical improvement. The coolant system is once-through, direct cycle where whole core coolant flows to the turbine. The goal is to achieve the high coolant outlet temperature over 500°C. We study the reactors with blankets cooled by ascending and descending flow. SCFR-H adopts a radial heterogeneous core with zirconium-hydride layers between the driver core and the blankets for making coolant void reactivity negative. The coolant outlet temperature of the core with blankets cooled by ascending flow is low, 467°C. The reasons are as follows: (1) the power swing due to the accumulation of fissile material in the inner blankets with burn-up, and (2) local power peak in the assemblies due to the zirconium-hydride layers. The difference in the outlet coolant temperature is more enhanced than the low temperature core where outlet temperature is approximately 400°C. The reason is that the coolant temperature is more sensitive to the enthalpy change than near the pseudo critical temperature, 385°C at 25 MPa. Thus, we design the core with blankets cooled by descending flow to obtain high coolant outlet temperature. The coolant outlet temperature becomes 537°C, which is 70°C higher than that of the core with ascending blanket flow. The thermal efficiency is improved from 43.2 to 44.6%. The coolant mass flow rate per electric power decreases by 14%. This will reduce the size of the balance of plant (BOP) system. The power of the reactor is high (1565 MWe) and the void reactivity is negative.  相似文献   

17.
提出了超临界水冷混合堆快谱区多层燃料组件设计方案.应用MCNP程序为该组件建立计算模型,并进行了相应的物理计算;同时运用子通道分析程序STAFAS对多层燃料组件子通道进行了初步的稳态热工分析.计算结果表明:超临界水冷混合堆快谱区多层燃料组件燃料转换比超过1.0,并且获得负的冷却剂空泡反应性系数;燃料包壳表面最高温度约为595℃,低于设计准则规定的上限值,同时组件各子通道出口冷却剂温度均匀性较好.通过对燃料棒径敏感性分析可知,较大棒径组件燃料转换比较大,但也会导致热通道包壳表面温度峰值升高.  相似文献   

18.
The natural circulation boiling type SMR can experience flow instability during the startup transients due to the void reactivity feedback. A BWR-type natural circulation test loop has been built to perform the nuclear coupled startup transient tests for Purdue Novel Modular Reactor (NMR). This test loop is installed with different instruments to measure various thermal hydraulic parameters. The testing process can be monitored and controlled through PC with the assistance of LabVIEW procedure. The effects of power ramp rate on the flow instability during the nuclear coupled tests were investigated by controlling the power supply based on the point kinetics model with coolant void reactivity feedback. Two power ramp rates were investigated and the results were compared with those of the thermal hydraulic startup transients without void reactivity feedback. The time trace of power supply, system pressure, natural circulation rate, and void fraction profile are used to determine the flow stability during the transients. The results show that nuclear coupled startup transients also experience flashing instability and density wave oscillations. The power curves calculated from point kinetics model for startup transients show some fluctuations due to void reactivity feedback. However, the void reactivity feedback does not have significant effects on the flow instability during the startup procedure for the NMR.  相似文献   

19.
In a course of a design study of the JAERI passive safety pressurized water reactor (JPSR), a complete loss-of-flow transient caused by a trip of all pumps was analyzed with the RETRAN code to determine an inertia of canned-motor pump utilized as the primary coolant pump and to confirm feasibility of the design condition. This transient was selected because the pump had a low inertia rotor inducing fast flow coastdown, and among the transients in which the pump had dominant effect on the departure from nucleate boiling (DNB), the analyzed transient was severest in view of the DNB occurrence. The DNB threshold was related, based on sensitivity calculations, with the coolant density reactivity coefficient and the pump inertia. From the calculations, it was concluded that the pump inertia higher than 250 kg·m2 (8% of the ordinary PWRs) was necessary for preventing the DNB occurrence for the present design of JPSR, regardless of the actuation of the reactor scram. The DNB occurrence could be prevented only by the inherent nature of the reactor core which reduced the power by insertion of negative coolant density reactivity during the transient and this was one of major features of JPSR. It was shown by a rough estimation that the necessary condition could be practically realized by incorporation of a cylindrical-type flywheel.  相似文献   

20.
The turbulent mixing rate is a very important variable in the thermal–hydraulic design of nuclear reactors. In this study, the turbulent mixing rate for the flow through rod bundles is estimated with the scale analysis on the flow pulsation generated by periodic vortices that is pointed out as a main cause of the mixing in rod bundles. Based upon the assumption that turbulent mixing is composed of molecular motion, isotropic turbulent motion (turbulent motion without the flow pulsation), and flow pulsation, the scale relation is derived as a function of P/D, Re, and Pr. The derived scale relation is compared with the published experimental results and shows good agreement. Since the scale relation is applicable to various Prandtl number fluid flows, it is expected to be useful for the thermal–hydraulic analysis of liquid metal coolant reactors as well as moderate Prandtl number coolant reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号