首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 77 毫秒
1.
木质素磺酸钙对水泥水化的影响   总被引:1,自引:1,他引:0  
研究了掺加木质素磺酸钙(calcium lignosulfonate,CLS)后水泥净浆体系的水化速度、水化产物生成量,以及硬化水泥石的微观结构及孔隙结构的变化。CLS大幅度延缓了水泥水化放热,降低了水化速度,使3~10h内水泥的水化程度减少,但对1d后的水化程度影响不大且能促进水泥的后期水化。X射线衍射分析表明高掺量CLS促进硬化水泥中生成钙矾石,抑制水化硅酸钙(CSH)的早期生成,但对CSH的后期生成无影响。扫描电镜观察发现:CLS的掺加抑制了水化产物晶体的生长,使CSH凝胶难以形成空间网架,钙矾石晶体变得纤细。随CLS掺量的增加,硬化水泥中总孔隙容积增加,30nm以上的孔隙显著减少,10nm以下的微孔数量大幅度增加,平均孔径减小。掺加CLS的水泥浆体水化产物晶体发育不完全,硬化水泥的孔隙容积明显增加,是硬化水泥28d龄期内抗压强度显著下降的主要原因。  相似文献   

2.
用化学试剂Cr(NO3)3代替工业废物中的Cr,对含Cr水泥熟料的矿物生成及水化进行了研究。研究结果表明,Cr可以提高熟料相中C2S的含量,在水泥水化初期促进了钙矾石的增长,同时有新的水化产物结晶相生成。  相似文献   

3.
木质素磺酸钙对硬化水泥抗压强度的影响   总被引:2,自引:2,他引:0  
庞煜霞  邱学青  杨东杰  楼宏铭 《精细化工》2006,23(5):502-505,513
木质素磺酸盐(简称木盐)具有较强缓凝和引气作用,可提高混凝土工作性,但过量使用会导致混凝土抗压强度急剧下降。该文从掺量、相对分子质量、亲水基、金属阳离子和糖分5个方面研究了木质素磺酸钙(简称木钙)对硬化水泥抗压强度的影响规律。结果表明,随木钙掺量增加,硬化水泥的各龄期抗压强度均下降,掺量w(木钙)=0.5%时,硬化水泥的28 d抗压强度仅为空白浆体的63.6%。其中相对分子质量为1万~5万的木钙超滤级分对硬化水泥强度的降低作用较小。木钙中糖分质量分数由12.5%降至2.8%时,硬化水泥的7 d抗压强度比可提高16%。通过氧化将木钙分子中的羟基转化为羧基,硬化水泥的3、7、28 d抗压强度比分别提高22.1%、34.7%和13.0%;通过磺甲基化将木钙的磺化度由1.36 mmol/g提高到2.48 mmol/g,硬化水泥的3、7、28 d抗压强度比分别提高36.2%、41.2%和17.9%。  相似文献   

4.
以三种不同粒度的硫铝酸盐水泥(CSA水泥)为矿物外加剂,研究了CSA水泥粒度、掺量对硅酸盐水泥(PC)物理性能、水化过程及水化产物性能的影响.研究表明:CSA水泥的掺量与粒度同时影响PC的凝结时间及标准稠度用水量;当CSA水泥掺量较低(1%)时,PC抗压强度有所提高;CSA水泥缩短PC水化诱导期,促进早期水化,降低C3S的水化速率,加快AFt向AFm转化;CSA水泥增加了早期水泥硬化浆体的孔隙率、累计孔体积及最可几孔径,但对后期硬化浆体的影响不大;而AFt与CH的形貌如短针状AFt及大尺寸六方板状CH不利于晶体的连生与结合,对强度的影响较大.  相似文献   

5.
研究了聚羧酸系高效减水剂(PCE)和萘系减水剂(FDN)对硫铝酸盐水泥净浆工作性能及力学性能影响,通过XRD和SEM检测手段对水化产物进行表征.结果表明:两种减水剂对硫铝酸盐水泥净浆流动度的影响存在饱和点;相比于FDN型减水剂,PCE型减水剂对硫铝酸盐水泥净浆具有更好的减水效率及分散能力.PCE型减水剂阻碍硫铝酸盐水泥净浆早期水化,并降低硫铝酸盐水泥净浆1 d抗压强度;FDN型减水剂能够加速硫铝酸盐水泥净浆早期水化,缩短初凝和终凝时间,提高硫铝酸盐水泥净浆1d抗压强度.两种减水剂对硫铝酸盐水泥净浆3d后抗压强度及水化产物种类均没有影响.  相似文献   

6.
本文通过测定不同掺量的聚羧酸减水剂(PCE)作用下铝酸三钙(C3A)-石膏体系水化热,并采用XRD、SEM、Raman分析了水化产物微观结构的形成规律,研究了PCE对铝酸三钙-石膏体系水化调控机理.结果表明:水灰比为0.6,摩尔比为1∶1的铝酸三钙-石膏体系,水化24 ~ 48 h时出现水化热温峰,并生成大量的Aft(钙矾石);PCE掺量不同对铝酸三钙-石膏体体系的水化调控存在延缓与加速水化的双重作用,当掺量为0.1% ~0.3%时,PCE抑制铝酸三钙-石膏体系水化放热及AFt的形成;当掺量为0.5%时,PCE促进铝酸三钙-石膏体系水化放热,加速AFt的形成.  相似文献   

7.
用化学试剂Cd(NO3)2代替工业废物中的Cd元素,对含Cd^2+熟料矿物相组成及其水泥的水化产物用X射线衍射、扫描电镜及电子能谱分析测试方法分别进行了研究。结果表明,含Cd^2+水泥水化产物的主要组成与普通硅酸盐水泥基本相同,Cd^2+几乎不存在于AFt晶体结构中。  相似文献   

8.
彭康  黄从运  杜颖  甄风磊 《硅酸盐通报》2016,35(12):4201-4206
本文通过酯化反应合成了马来酸三乙醇胺酯(MT),并以合成的马来酸三乙醇胺酯为单体,与甲基丙烯酸和马来酸酐通过水溶液聚合,制备分散性好的高分子助磨剂(PMA).以三乙醇胺(TEA)作为对比,研究了不同掺量下PMA对不同龄期水泥强度的影响,借助于XRD、SEM、FTIR、TG-DSC等测试手段对水泥的水化程度和水化产物的微观结构进行分析.结果表明:PMA助磨剂能够促进C3A和C3S的水化,提高C-S-H凝胶的聚合度,从而提高水泥水化产物质量,改善水泥水化产物的结构.  相似文献   

9.
双膨胀中热硅酸盐水泥及其水化机理的研究   总被引:2,自引:1,他引:1  
叶青  陈胡星  楼宗汉 《硅酸盐学报》2000,28(4):335-339,347
用XRD,SEM/EDAX和水泥净浆膨胀测定等方法对高镁中热水泥熟料-石膏系统的双膨胀中热水泥进行了研究,得到(1)在熟料中明显地存在着相到分散的颗粒尺寸约为5~7.5μm的方镁石颗粒;(2)双膨用或热水泥强度和膨胀随SO3含量的变化规律。(3)该水泥充分利用了钙矾石膨胀和水镁石膨胀,在28d龄期前主要仿造钙矾石膨胀,在28d龄期后主要依靠水镁石膨胀;(4)在适当的SO3含量和MgO质量分数为4%  相似文献   

10.
我国明矾石的物化性质及其在水泥中的水化硬化   总被引:1,自引:0,他引:1  
游宝坤 《硅酸盐学报》1989,17(4):375-382
本文系统地介绍了我国明矾石的地质成因、化学成份和矿物组成及其在水泥中的水化硬化,提出了明矾石在碱-硫酸盐激发下形成钙矾石的水化机理,综述了我国利用明矾石作为特种水泥、外加剂的原料及作为普通水泥的混合材所取得的应用成果。  相似文献   

11.
钙盐调凝剂对硅酸盐水泥水化性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了硫酸钙和氯化钙两种钙盐在不同的掺量下对硅酸盐水泥水化性能的影响,试验发现随着两种钙盐掺量的增大,水泥标准稠度值呈现先减小后增大的趋势,且氯化钙的流动度保持效果没有硫酸钙好,但是氯化钙对水泥强度的发展贡献更大,而掺硫酸钙随着掺量达到2‰后,28 d强度出现倒缩.  相似文献   

12.
蒋卓  雷学文  廖宜顺  廖国胜 《硅酸盐通报》2016,35(12):4088-4092
研究了粉煤灰(FA)及其掺量对硫铝酸盐水泥(CSA)浆体的凝结时间、抗压强度和化学收缩的影响规律,并通过XRD、SEM等方法对72 h龄期时的水化产物进行分析.结果表明,粉煤灰缩短了硫铝酸盐水泥的凝结时间,当粉煤灰掺量为40%时,初凝时间和终凝时间分别缩短了76 min和94 min;掺入粉煤灰使得硫铝酸盐水泥的抗压强度降低,但在28 d龄期时,粉煤灰掺量为20%的硫铝酸盐水泥复合浆体的抗压强度仅略微降低;在硫铝酸盐水泥体系中掺入粉煤灰时,其浆体化学收缩随着粉煤灰掺量的增加逐渐减小,当粉煤灰掺量为20%和40%时,72 h龄期时的化学收缩值分别为0.138 mL/g和0.088 mL/g,较未掺粉煤灰时分别降低了26%和49%;微观分析表明,掺入粉煤灰后,72 h龄期时的水化产物主要是钙矾石和水化硅酸钙凝胶,并未发现氢氧化钙晶体.  相似文献   

13.
研究了一种新型快凝快硬高贝利特硫铝酸盐水泥的水化性能,并利用微量热仪、XRD、TGA、SEM等方法进行了水泥水化过程,水化产物和微观形貌结构的表征.实验结果表明:新型高贝利特硫铝酸盐水泥熟料的早期水化放热迅速并集中,早期强度发展迅速;该水泥的早期水化产物主要为AFt和铝胶相,未发现CH相;在水化后期,生成的AFt会发生转化生成AFm相,同样没有发现CH相.随着水化的进行,水化产物不断增多,针棒状的AFt穿插,交错在凝胶之间,形成了较为致密的结构,从而提高了水泥的强度.  相似文献   

14.
通过凝结时间、抗压强度、电阻率、浆体内部温度测试和水化产物分析,研究了20 ℃、35 ℃和50 ℃下矿渣(GGBFS)对铝酸盐水泥(CAC)早期水化行为的影响。结果表明,掺入矿渣会逐渐减小CAC 72 h的化学收缩,降低化学收缩速率峰值。20 ℃时,电阻率变化曲线出现了明显的晶相转变期,化学收缩曲线存在明显的诱导期; 35 ℃时,凝结时间延长,掺入矿渣抑制了电阻率的发展;50 ℃时,电阻率在接近24 h时显著降低,凝结时间显著缩短,掺入矿渣缓解了24 h电阻率的减小。矿渣-铝酸盐水泥体系的水化产物和抗压强度受养护温度的影响较大。20 ℃时,掺入40%(质量分数)矿渣减少了CAH10的生成量,降低了硬化浆体的强度;35 ℃和50 ℃时,1 d水化产物主要为C2AH8和少量C3AH6,掺入矿渣延缓了强度的倒缩。在28 d龄期时,不同养护温度下掺入矿渣均能促进C2ASH8的生成。  相似文献   

15.
在水泥胶砂中掺入适当配比的煤矸石可以增加水泥砂浆的强度,尤其是早期强度.与不添加煤矸石的基准砂浆相比,煤矸石的掺量为9%时,砂浆3 d抗压强度提高1.0 MPa,28 d抗压强度提高2.0 MPa.XRD、TGA-DTA和SEM分析证实:加入煤矸石促进了水泥砂浆7 d早期水化反应,生成水化产物钙矾石、C-S-H凝胶、AFm和氢氧化钙,且水化产物的数量亦不同,各产物的晶型结构也不相同,改性后水化产物增多,水化速率加快,因而影响砂浆的宏观力学强度.  相似文献   

16.
陈娇  于诚  慕儒  余鑫 《硅酸盐通报》2021,40(5):1429-1140
随着纳米技术的不断发展,纳米材料逐步开始应用于传统混凝土材料中,以提高混凝土的各项服役性能。纳米水化硅酸钙(纳米C-S-H)是一种新型的早强纳米复合材料,可通过晶核效应加快水泥早期水化速率,显著提高水泥基材料的早期力学性能,从而提高施工效率,满足特殊施工要求。本文系统总结了纳米C-S-H的制备方法,及纳米C-S-H对水泥基材料早期和长期性能的影响规律,探讨了其对于水泥水化过程和水化产物的影响机制,其中重点介绍了采用聚合物分散纳米颗粒制备的C-S-H/PCE(聚羧酸型减水剂,简称PCE)纳米复合材料。  相似文献   

17.
通过实验分析了石膏一矿渣胶结材的水化机理,结果表明石膏一矿渣胶凝材料的水化产物主要是沸石类的矿物以及化学组成近似于沸石类矿物的无定形凝胶材料;标养条件下生成结晶尺寸较小的棒状和立方形的沸石类矿物;柠檬酸盐缓凝剂可以控制浆体中的各类矿物的生成机制,改变水化产物在半水石膏中的凝结、硬化前的数量、比例,都影响硬化体的结构组成.  相似文献   

18.
改性硅酸盐水泥的水化动力学研究   总被引:2,自引:0,他引:2  
将磷铝酸盐水泥熟料掺入到硅酸盐水泥中制备改性水泥,从水化动力学的角度研究其水化情况,并与硅酸盐水泥的相应行为进行了对比.首先通过测定水化放热速率、新拌水泥浆体中的Ca2+和SiO44-离子浓度、电导率及pH值研究了改性硅酸盐水泥的水化历程,并求得了水化动力学方程.其次,测定了改性硅酸盐水泥的净浆与砂浆的强度,并用XRD等分析方法初步探讨论了改性水泥的水化机理.研究发现,改性硅酸盐水泥的水化历程与硅酸盐水泥相似,也经历初始期、诱导期、加速期、减速期和稳定期,但水化放热速率明显提高;在加速期,两者的水化反应均主要由自动催化反应控制,在减速期,均主要由扩散过程控制,但反应速率常数前者明显高于后者.无论是砂浆强度,还是净浆强度,前者也均高于后者,且凝结时间相对缩短.XRD图谱显示,前者的C3S/C2S衍射峰强度的降低率高于相应龄期的硅酸盐水泥.上述结果均意味着改性硅酸盐水泥的水化速度明显高于硅酸盐水泥;水化加速的机理为磷铝酸盐熟料水化吸收了水化浆体中OH-离子,使水化体系的OH-离子浓度减少,从而加速了C3S、C2S的水化反应.  相似文献   

19.
考察了各因素对木质素磺酸钙与丙烯酰胺接枝共聚反应的影响,并对产物的结构进行了红外光谱分析;此外,还对产品性能,如热稳定性、抗盐、抗钙能力进行了测试。接枝共聚反应的优化工艺条件为:m(木质素磺酸钙)∶m(丙烯酰胺)=1∶5,引发剂浓度为4.2×10-3mol.L-1,反应温度50℃,反应时间2h。接枝共聚物的红外谱图表明,木质素磺酸钙与丙烯酰胺之间发生了接枝共聚反应。接枝共聚物有一定的热稳定性,抗盐、抗钙能力较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号