首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
准确地提取荔枝果实的完整轮廓对采摘机器人自动识别与采摘至关重要。以蚁群和模糊C均值(FCM)聚类为理论基础,选用符合荔枝颜色特性的L*a*b*颜色空间,提出一种基于蚁群和带空间约束FCM的荔枝图像分割算法。该算法利用L*a*b*颜色空间的a*通道正轴代表红色和负轴代表绿颜色进行初始分割,然后利用蚁群聚类算法全局性和鲁棒性的优点确定FCM的聚类中心,用引入空间约束的FCM完整地分割出荔枝果实。实验结果表明此方法实现了荔枝图像完整地分割,并且满足了采摘机器人后续的荔枝识别与采摘,对成熟荔枝分割的正确率达到了87%。  相似文献   

2.
基于模糊C均值聚类的图像分割是应用较为广泛的方法之一,但大多数模糊C均值聚类方法都是基于欧式距离,且存在运算时间过长等问题。提出了一种基于Mahalanobis距离的模糊C均值聚类图像分割算法。实验分析表明,提出的算法在保证分割质量的前提下,能较快提高分割速度。实验结果表明了该方法的有效性。  相似文献   

3.
一种改进的基于模糊聚类的图像分割方法   总被引:13,自引:1,他引:13       下载免费PDF全文
针对亮度不一致的阴影路面的目标分割问题,对使用空间关系约束的模糊聚类算法进行了改进,即首先定义了像素之间以及像素与区域之间的近邻关系,并构造了像素与区域之间的空间关系隶属度矩阵,然后将此矩阵约束到传统的模糊C-均值聚类算法的隶属度矩阵中,最终形成了基于空间关系约束的模糊聚类算法。该算法只需设置很少的参数即可自动完成聚类。该算法在受光照影响导致目标亮度不一致的林荫道道路图像中进行了实验。实验结果表明,该算法对机器人导航中阴影路面的一致性分割方面具有良好的效果。  相似文献   

4.
为了更有效地对被噪声污染的脑部MR图像进行分割,提出了一种基于模糊核聚类和模糊Markov随机场的脑部MR图像分割算法。该算法在使用高斯径向基函数的核聚类目标函数中,引入了基于Markov随机场的补偿项,作为分割算法的空间约束。这种空间补偿项用Gibbs分布描述,实际上是一种归一化的核函数,其和用来度量灰度特征的核函数的形式是相似的,并且这种空间约束利用了分割结果的模糊信息。这种基于核函数和Markov随机场模型的算法克服了传统聚类以及核聚类算法的缺陷,不仅提出了更加合理的空间约束, 而且改善了原有的分割模型,因此可以得到更加分段光滑的聚类结果。通过对合成图像、模拟MR图像以及临床MR图像进行的分割实验以及和标准分割结果的比较表明,该算法优于相关算法,可以有效地分割被污染的MR图像。  相似文献   

5.
针对传统模糊核聚类在红外图像分割方面存在的问题,提出了一种改进的模糊核聚类红外图像分割算法.在模糊核聚类的基础上引入了红外图像像素点的空间约束关系和邻域隶属度相关性,并定义了隶属度约束强度指数修正隶属度函数,可有效抑制红外图像分割结果中的噪声和野值.实验结果表明,与传统的分割结果相比,这种考虑邻域隶属度相关性的空间约束模糊核聚类算法可有效地对红外图像进行分割,准确完整地分割出了目标,达到了令人满意的结果.  相似文献   

6.
针对模糊聚类算法邻域信息与空间信息利用率低易受噪声影响的问题,提出一种结合核函数与马氏距离的FCM算法,即FCMKM算法。首先,将图像像素点由低维空间通过核函数非线性映射到高维空间;然后,利用马氏距离替换原有的欧氏距离作为高维空间距离量度;最后,利用改进后的算法对图像进行分割。为验证FCMKM算法的性能,选取Bezdek划分系数、Xie-Beni系数、重构错误率、运行时间、迭代次数五个评测指标作为对比实验的评价标准。实验结果表明,与传统FCM算法、基于核函数的FCM算法、基于马氏距离的FCM算法相比,FCMKM算法能有效地提高模糊聚类算法的抗噪性。  相似文献   

7.
黄金土 《福建电脑》2014,(4):120-122
本文分析了模糊聚类在图像分割领域的应用,介绍了模糊集和聚类分析的作用,最后引出了模糊C均值聚类图像分割算法。  相似文献   

8.
基于MS-FCM算法的MR图像分割方法   总被引:1,自引:0,他引:1       下载免费PDF全文
李彬  陈武凡 《计算机工程》2010,36(16):198-199
针对传统模糊C-均值(FCM)聚类算法在分割低信噪比图像时准确性较差的问题,提出一种用于MR图像分割的改进算法MS-FCM。针对脑部MR图像相邻像素属于同一分类的模糊隶属度相近的特性,在迭代过程中对隶属度数据集进行滤波,以降低噪声对聚类精度的影响。模拟脑部MR图像和临床脑部MR图像的分割实验证明,该算法可以提高图像分割精度。  相似文献   

9.
基于蚁群算法的图像分割方法   总被引:20,自引:0,他引:20  
蚁群算法是一种具有离散性?并行性?鲁棒性和模糊聚类能力的进化方法?根据数字图像的离散性特点,首先从模糊聚类角度出发,将蚁群算法引入图像分割中,综合考虑像素的灰度?梯度及邻域特性进行特征提取?然后,针对蚁群算法循环次数多,计算量大的问题,设置启发式引导函数和初始聚类中心进行改进?详细阐述特征提取?初始聚类中心设置和模糊聚类流程?实验证明改进蚁群算法可以快速准确地分割出目标,是一种有效的图像分割方法  相似文献   

10.
提出一种图像分割算法,解决水面无人艇在执行目标跟踪与识别任务过程中的图像快速准备分割问题。首先使用均值滤波算法对彩色的海洋背景图像进行滤波,同时利用其非参数性得到图像的聚类中心和类别数,并以此作为初始化参数进行图像的模糊C均值聚类,在此基础上进行大津法Otsu二值化处理实现目标提取。使用BSDS500标准数据集和海洋背景图像对算法的分割效果及效率进行验证,与传统的模糊C均值算法、脉冲耦合神经网络算法、自适应遗传算法以及马尔科夫随机场算法进行对比的结果显示了该算法的有效性。  相似文献   

11.
目的 低光照图像增强是图像处理中的基本任务之一。虽然已经提出了各种方法,但它们往往无法在视觉上产生吸引人的结果,这些图像存在细节不清晰、对比度不高和色彩失真等问题,同时也对后续目标检测、语义分割等任务有不利影响。针对上述问题,提出一种语义分割和HSV(hue,saturation and value)色彩空间引导的低光照图像增强方法。方法 首先提出一个迭代图像增强网络,逐步学习低光照图像与增强图像之间像素级的最佳映射,同时为了在增强过程中保留语义信息,引入一个无监督的语义分割网络并计算语义损失,该网络不需要昂贵的分割注释。为了进一步解决色彩失真问题,在训练时利用HSV色彩空间设计HSV损失;为了解决低光照图像增强中出现细节不清晰的问题,设计了空间一致性损失,使增强图像与对应的低光照图像尽可能细节一致。最终,本文的总损失函数由5个损失函数组成。结果 将本文方法与LIME(low-light image enhancement)、RetinexNet(deep retinex decomposition)、EnlightenGAN(deep light enhancement using generative adversarial networks)、Zero-DCE(zero-reference deep curve estimation)和SGZ(semantic-guided zero-shot learning)5种方法进行了比较。在峰值信噪比(peak signal-to noise ratio,PSNR)上,本文方法平均比Zero-DCE(zero-reference deep curve estimation)提高了0.32dB;在自然图像质量评价(natural image quality evaluation,NIQE)方面,本文方法比EnlightenGAN提高了6%。从主观上看,本文方法具有更好的视觉效果。结论 本文所提出的低光照图像增强方法能有效解决细节不清晰、色彩失真等问题,具有一定的应用价值。  相似文献   

12.
为满足植物分类和识别对植物叶片叶脉信息的需要,提出了基于HSV彩色空间与直方图信息FFCM聚类算法相结合的植物叶片叶脉提取方法。该算法首先将植物叶片图像由RGB转换到HSV彩色空间,然后使用FFCM算法实现叶片的自动分类和叶脉信息的提取。实验结果表明,该方法既能有效处理和区分绿色和枯黄的叶片图像,也能很好的处理和区分受光均匀和受光不均匀的叶片图像,可以应用于植物的分类与识别。  相似文献   

13.
为实现复杂视频中前景目标的分割,需要解决前景目标准确提取难题,但在光照情况下,会受到阴影影响。为解决这一难题,提出一种结合高斯混合模型的HSV颜色空间阴影检测算法。对HSV颜色空间阴影检测进行修正,消除对非运动目标区域阴影的误检,加入运动目标轮廓检测,消除运动目标边缘阴影误检,得到运动目标阴影的准确检测。实验结果表明,该算法能有效检测复杂背景下的阴影目标,为获得准确分割前景目标奠定基础。  相似文献   

14.
一种快速的模糊C均值聚类彩色图像分割方法   总被引:4,自引:0,他引:4       下载免费PDF全文
FCM用于彩色图像分割存在聚类数目需要事先确定、计算速度慢的问题,为此,提出一种快速的模糊C均值聚类方法(FFCM)。首先,对原始彩色图像进行基于梯度图的分水岭变换,从而把原始彩色图像数据分成一些具有色彩一致性的子集;然后,利用这些子集的大小和中心点进行模糊聚类。由于FFCM聚类样本数量显著减小,因此可以大幅提高模糊C均值聚类算法的计算速度,进而可以采用聚类有效性指标确定聚类数目。实验表明,这种方法不需要事先确定聚类数目,在聚类有效性能不变的前提下,可以使模糊聚类的速度得到明显提高,实现了彩色图像的快速分割。  相似文献   

15.
杨肖  徐晓 《传感器与微系统》2012,31(2):30-32,35
为了快速提取出工业上简单仪器仪表上的数字符号,在深入研究分割算法和遗传算法的基础上,提出了一种基于HSV彩色空间与遗传算法相结合的快速分割数字符号的算法。在HSV空间条件下,利用H分量信息映射准确定位待识别数字符号区域后,利用遗传算法实现数字符号与背景的快速有效分割。实验仿真表明:该算法能够有效收敛,并准确分割出数字符号。  相似文献   

16.
视频火焰检测对消防安全具有重要的实际意义.火焰颜色信息在视频火灾检测中起着举足轻重的作用,众多学者提出了基于不同颜色空间的多种火焰颜色检测算法.针对目前视频火焰颜色检测算法检测率低、误检率高、适应性差等不足,提出基于颜色空间的火焰图像分割方法.通过研究火焰图像在颜色空间上的分布情况,分析火焰像素对应的Y,Cb和Cr分量...  相似文献   

17.
模糊C均值(FCM)被广泛应用于彩色图像分割中,但传统的模糊C均值由于没有考虑空间信息,因此对噪声特别敏感。针对此问题,提出了一种在HIS颜色空间结合像素邻域空间信息的模糊聚类新方法。实验结果表明,此方法对高噪声图像有较好的处理结果。  相似文献   

18.
为提高彩色图像的分割效果,提出了一种最大灰度熵图像分量和脉冲耦合神经网络(PCNN)相结合的彩色图像分割方法.将彩色图像转换到符合人眼视觉特征的色调饱和度亮度(HSV)颜色空间中,选取灰度熵值最大的分量图像,用PCNN增强以增大感兴趣区域对比度,对增强后的分量图像运用PCNN进行循环分割,当二维Renyi熵值不再大于前一次的值时,终止PCNN的循环分割,获得最佳分割结果.运用多种评价指标对所分割的结果进行评价,评价结果表明:提出的算法能够有效实现对彩色图像的分割,尤其在图像细节方面,比传统的彩色图像分割方法表述得更为清晰.  相似文献   

19.
基于色调空间的彩色图像匹配算法*   总被引:2,自引:0,他引:2  
在彩色图像匹配应用中,其色调分量能够提供更多的有用信息,且其颜色恒常性能够克服外部光强变化对匹配效果的影响。同时,如何选择匹配搜索策略也是图像匹配算法中的重要问题。基于彩色图像拼接中的图像匹配要求,提出基于彩色图像在HSV空间进行匹配的方法,并通过色调序贯相似性检测算法(H-SSDA)和塔式分解色调序贯相似性检测算法来提高匹配算法的精度和降低匹配空间搜索的计算量。实验结果表明,H-SSDA和塔式H-SSDA算法具有较高的匹配精度,其计算量也能够适应大多数应用的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号