首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用无压烧结工艺制备Mullite–Si_3N_4/Si C(M–SBSN)复相陶瓷,分析了Si C含量、烧结助剂和莫来石添加量对Si_3N_4/Si C(SBSN)陶瓷材料力学性能、耐磨性能和热学性能的影响。结果表明:莫来石的引入显著提高了SBSN陶瓷的烧结特性、抗弯强度、耐磨性和抗热震性,在相对较低的烧成温度(1 600℃)制备了低密度、高耐磨性的M–SBSN复相陶瓷。当莫来石添加量为30%时,样品的耐磨性能最好,磨损量与Al2O3和ZrO_2材料相比降低了80%~85%,而密度只有Al2O3的76%和ZrO_2的48%。摩擦磨损试验后,M–SBSN复相陶瓷材料与Al2O3、ZrO_2材料相比具有更浅的划痕和损伤度,与摩擦磨损试验结果相一致。  相似文献   

2.
以微米级Si3N4和h-BN粉末为原料,CaF2–Al2O3–Y2O3为烧结助剂,采用常压烧结工艺制备了BN体积含量为25%的Si3N4/BN复相陶瓷。研究了CaF2添加量对Si3N4/BN复相陶瓷材料力学性能的影响,并通过X射线衍射和场发射扫描电镜分析了复相陶瓷的物相组成和显微组织。结果表明:随着CaF2添加量增加,制备的Si3N4/BN复相陶瓷材料气孔率逐渐增大,收缩率变小,相对密度减小。添加量为2%(质量分数)时,Si3N4/BN复相陶瓷的室温抗弯强度达145.5MPa。添加适量的CaF2可在Si3N4/BN复相陶瓷材料常压烧结过程中较大程度地破坏h-BN的卡片房式结构,将微米级的h-BN颗粒变成纳米级颗粒。  相似文献   

3.
以工业垃圾废岩棉和废玻璃为原料,以CaCO3为发泡剂制备出高强度泡沫玻璃陶瓷。研究了废岩棉和废玻璃的添加量及烧结温度对泡沫玻璃陶瓷材料性能的影响。结果表明:随着废岩棉添加量的增加和烧结温度的提高,熔体黏度会降低,不利于气泡结构的稳定;在废岩棉添加量为40%、750℃烧结温度下得到的样品容重为0.54 g/cm3、孔隙率为62.5%、抗压强度为4.76 MPa;样品主晶相为亚硅酸钙和石英晶相,加入TiO2作为晶核剂后主晶相改变为榍石;TiO2掺量为10%时,在750℃烧结20 min更经济,所得样品容重为0.82 g/cm3、孔隙率为50%、抗压强度为7.76 MPa。  相似文献   

4.
以阳泉产ZrO2原料为研究对象,通过控制烧成制度,即在烧结温度前保温(1600℃),再在C相区烧结固溶,经慢速冷却至1100℃后再自然冷却到室温,可使基体中长出大小合适的析出体,获得较佳的力学性能.含10mol%MgO的Mg-PSZ材料强度可达728MPa,韧性可达12.3MPa.m1/2,与宜兴料相比较,可知少量杂质(Fe2O3)可略降低材料的烧结温度,但对材料的力学性能无影响.通过SEM对选用不同烧成制度材料中析出体的形态进行了分析.  相似文献   

5.
以乱层结构h-BN(t-BN)和SiC纳米粉体为原料,B_2O_3为烧结助剂,利用放电等离子烧结技术(SPS)制备出SiC/h-BN复相陶瓷。采用X射线衍射和扫描电子显微镜对试样的物相组成和显微结构进行分析,研究烧结助剂含量对SiC/h-BN复相陶瓷的低温烧结行为、致密化、微观结构及力学性能的影响。结果表明:利用SPS低温烧结方法,添加少量B_2O_3添加剂,可有效地提高复相陶瓷的致密度和力学性能。与无添加剂烧结样品相比,烧结助剂的添加降低了样品烧结收缩起始温度,促进样品中片状h-BN晶粒的移动和重排,提高了颗粒间的结合强度。随着烧结助剂添加量的增加,复相陶瓷致密度显著增加,强度和韧性均呈现先增加后降低的趋势,在B_2O_3添加量为5%时,复相陶瓷相对密度和各项力学性能较高,其相对密度、抗弯强度、断裂韧性和弹性模量分别为96.92%、274.7MPa、2.91MPa·m1/2和127.2GPa,但添加过多B_2O_3,则不利于提高复相陶瓷的力学性能。  相似文献   

6.
利用气化炉渣制备轻质隔热墙体材料的研究   总被引:1,自引:0,他引:1  
以气化炉渣为原料,采用挤出成型法,通过力学性能测试、物相组成和显微结构分析,研究了烧成温度和结合剂添加量等工艺条件对制备的轻质隔热墙体材料性能的影响。结果表明:烧成试样的矿物相为钙长石、石英、赤铁矿和莫来石;1000℃烧成时,添加20%(质量分数,下同)粘土可制备出体积密度为1.00 g/cm3、导热系数为0.19W/(m·k)和耐压强度为5.3 MPa的轻质烧结自保温墙体材料;添加30%粘土可制备出体积密度为1.20 g/cm3、导热系数为0.23 W/(m·k)和耐压强度达20.1 MPa的烧结自保温可承重墙体材料;添加40%粘土可制备出体积密度为1.18 g/cm3、导热系数为0.26 W/(m·k)和耐压强度达16.6 MPa的烧结自保温可承重墙体材料。  相似文献   

7.
王昭 《佛山陶瓷》2022,(8):1-3+21
工业固废和矿山尾矿是生产发泡陶瓷的主要原料,生产配方中必须添加特殊的发泡剂产生发泡作用,再经过高温烧结,在烧结体内部形成大量均匀的闭口气孔结构,这类闭口硅酸盐陶瓷烧结材料和开口气孔技术的蜂窝陶瓷烧结材料结构完全不同。本文通过对工业固废的定义及分类、工业固废处理现状存在的主要问题、可用于生产发泡陶瓷的固体废弃物、发泡陶瓷产业发展现状的阐述,详细说明了发泡陶瓷的工艺制备现状。  相似文献   

8.
铝矾土尾矿是一种具有挑战性的固体废弃物,利用前景相对较小,大量堆存破坏生态环境,是铝土矿实现可持续开发利用过程中亟需解决的问题。以铝矾土尾矿为主要原料,添加铝矾土熟料、锂瓷石制备了莫来石–刚玉质复相陶瓷,通过添加了不同含量的锂云母,探究了其对莫来石–刚玉质复相陶瓷的性能影响。利用X射线衍射仪、扫描电子显微镜对陶瓷的物相组成和形貌进行分析,研究锂云母的含量、烧结温度等对陶瓷力学性能的影响。结果表明:锂云母的加入可降低陶瓷烧结温度,提高其力学性能,当添加质量分数为10%的锂云母、烧结温度为950℃,制得莫来石–刚玉质复相陶瓷的力学性能较好,满足建筑陶瓷材料应用领域及建筑砖使用要求,其物相组成为刚玉、莫来石、石英、赤铁矿、金红石及玻璃相,体积密度为1.75 g/cm3,导热系数为0.447 W/(m·K),收缩率为5.47%,常温抗压强度为74.87 MPa,在建筑陶瓷材料等领域具有广泛的应用前景。  相似文献   

9.
以MgO为添加剂,制备8YSZ陶瓷材料,研究MgO掺杂对材料致密化、显微结构、相组成和抗弯强度的影响。结果表明:引入MgO添加剂后有利于材料的致密化。当MgO含量较少时,MgO固溶于基体中,当MgO≥7wt%时,8YSZ基体中出现第二相。添加少量MgO,晶粒尺寸增大,当出现第二相时,晶粒尺寸略有减小。材料的致密化使其具有良好的抗弯强度。  相似文献   

10.
海万秀  韩凤兰  罗钊  陈浩  白柳扬 《硅酸盐通报》2018,37(12):3776-3780
为最大限度地利用工业固废,以镁渣、粉煤灰、电石渣等固废为原料,经高温烧结制备多孔陶瓷材料,研究了三种固废原料的配比对多孔陶瓷烧失率,气孔率,吸水率,体积密度,抗压强度,微观形貌以及物相的影响.实验结果表明:烧结温度1150℃,保温时间为4 h,镁渣、粉煤、电石渣配比为70:25:5时,所制备的多孔陶瓷具有最大抗压强度,98 MPa;配比为60:15:25时,多孔陶瓷具有最大气孔率,57%;配比为60:30:10时,多孔陶瓷骨架完整,微孔分布均匀.多孔陶瓷的物相主要以CaO和SiO2高温反应的产物偏硅酸钙,硅酸二钙或硅酸钙镁为主,含有少量铝硅酸盐和铁酸盐.  相似文献   

11.
为实现“双碳”目标,推动大宗固废的资源化利用,开发探究多种固废协同制备发泡陶瓷材料的方法理论,以花岗岩锯泥和大理石废石粉为主要原料,SiC为发泡剂,通过高温烧结制备高闭气孔率的发泡陶瓷,研究原材料配比、烧结温度以及发泡剂掺量对发泡陶瓷的孔结构及性能的影响。结果表明,大理石废石粉中的CaCO3在高温下分解出的CaO是有效的助熔剂,能够破坏Si—O键,降低液相的黏度,促进发泡。同时CaO能够与SiO2反应生成硅灰石,提高材料的机械强度。在烧结温度为1 130℃、大理石废石粉质量掺量为10%、SiC质量掺量为1.0%时,制备的发泡陶瓷孔结构均匀,综合性能最佳,闭口气孔率为79.16%,体积密度为583.42 kg/m3,抗压强度为3.86 MPa,吸水率为0.40%。本研究为花岗岩锯泥和大理石废石粉回收利用制备发泡陶瓷提供了理论基础。  相似文献   

12.
为推动大宗固废的综合利用,减轻花岗岩锯泥对环境的污染,本文探索了一种使用花岗岩锯泥、高铝黏土及少量添加剂并通过高温烧结来制备陶瓷坯体的方法,研究了原料配比和添加剂含量对烧结陶瓷坯体力学性能和显微结构的影响。结果表明,通过向球磨原料中添加聚乙烯醇(PVA)溶液可提高造粒粉的塑性,大幅提高花岗岩锯泥在坯体中的占比。高铝黏土可提升锯泥的烧结特性和成品的综合力学性能。其中,锯泥含量为80%(质量分数)、高铝黏土含量为20%(质量分数)的配方成品烧结温度为(1 160±30)℃,体积密度为2.43 g/cm3,吸水率为1%,弯曲强度为54 MPa,抗压强度为341 MPa,花岗岩锯泥利用率高且成本低,这为锯泥综合利用提供了一种高效的可行性方案。  相似文献   

13.
利用钙长石和自制莫来石晶须为主要原料,通过固相法制备莫来石/钙长石复合材料。研究了工艺制备方法对钙长石/莫来石复合材料性能的影响。实验结果表明:合适的保温点(1000℃,保温1h)在1400℃烧结对复合材料的力学性能有至关重要的影响,二次重烧结法比一次烧成所制备的复合材料力学性能有所提高。XRD和SEM分析表明:由于钙长石相和莫来石相通过玻璃相紧密结合,提高了材料的力学性能。  相似文献   

14.
研究了Mg O-Mg Al2O4复相陶瓷的组分变化及添加剂对烧结性能、力学性能以及热性能的影响。结果表明:当Al2O3含量为20%时,Mg O-Mg Al2O4复相陶瓷与固体氧化物燃料电池阳极支撑材料Ni O/YSZ的热膨胀系数一致;复合添加剂Ca O/Si O2可提高材料的烧结性能、力学性能以及热性能,但其添加量对各性能的影响有所不同:当Ca O/Si O2含量为2%时,气孔率最低,抗弯强度最高;当Ca O/Si O2含量为8%时,抗热震指数达到最高值;添加剂的含量对材料的热膨胀系数没有明显影响。选取Al2O3含量为20%、Ca O/Si O2添加量为6%的复相陶瓷与Ni O/YSZ粘接成实验组合构件,该组合件经600℃热震温差20次空冷循环,结合状态和强度无明显变化。  相似文献   

15.
付振生  金江 《陶瓷学报》2011,32(3):385-389
采用氧化硅为原料,木屑作为造孔剂制备了多孔的氧化硅陶瓷材料。借助于气孔率测试、抗弯强度测试、介电性能测试和SEM测试手段分析了造孔剂和烧结助剂的添加量对材料性能的影响。结果表明:加入BN作为添加剂烧成的氧化硅抗弯强度最大可达到14.80MPa。加入木屑作为造孔剂制备的陶瓷可以形成明显的气孔,气孔率最高可达到48.40%,介电常数最低可以达到3.0。  相似文献   

16.
本文以工业废弃物粉煤灰、当地粘土和工业氧化铝为原料,干压成型后采用固相烧结法制备多孔莫来石材料.为获得材料的最佳制备配方和相关工艺参数,应用混合正交试验法(41 ×24)研究了氧化铝添加量、原料粒径、原材料预处理和烧结温度对合成多孔莫来石复合材料性能的影响.研究结果表明:烧结温度对莫来石性能的影响较大,原料粒径的影响较小.当氧化铝添加量为20wt%,原料粒径为150μm并将原料经过盐酸酸洗处理后,在1200℃下进行烧结,可制得主晶相为莫来石的多孔陶瓷材料,其抗弯强度为44.56 MPa,显气孔率为41.52%,体积密度为1.14 g/cm3及吸水率为36.38%.  相似文献   

17.
采用机械混合方法,在8YSZ电解质材料中添加3Y-TZP,目的是在满足YSZ电解质电学性能要求的前提下,提高材料的力学性能.试样在常压下烧结,通过弯曲强度﹑断裂韧性﹑电导率测定和相组成分析,讨论了3Y-TZP添加量的影响.实验结果表明:加入3Y-TZP能显著提高陶瓷体的力学性能,弯曲强度和断裂韧性随着添加量的增多而提高;电学性能在0~30%(质量百分比,下同)的添加量时下降很小.添加30% 3Y-TZP的电解质材料在1000 ℃电导率为0.11 S/cm,强度接近300 MPa,综合效果最好.  相似文献   

18.
以低软化点的铅硼硅酸盐玻璃和Al2O3粉末为原料,制备Al2O3/玻璃低温共烧复合玻璃陶瓷材料。考察烧结温度和添加不同质量分数的Al2O3对复合玻璃陶瓷烧结机制和微波介电性能的影响,并探讨了作用机制。结果表明:Al2O3掺入PbO-B2O3-SiO2玻璃中改善了与Al2O3陶瓷的界面润湿,对烧结有一定的促进作用。在添加质量分数为4%Al2O3的复相玻璃陶瓷、烧成温度为850℃时性能最好,其密度为3.1 g/cm3,介电常数为8.46,介电损耗为0.001 1。  相似文献   

19.
液相烧结8YSZ陶瓷的性能研究   总被引:2,自引:0,他引:2  
胡玉燕  黄晓巍 《硅酸盐通报》2007,26(6):1178-1183
以Bi2O3为烧结助剂,利用液相烧结法制备8YSZ陶瓷材料,研究了烧结助剂对材料致密化、相组成、显微结构、力学性能及电学性能的影响.结果表明:烧结助剂的引入显著促进了材料的致密化、降低了烧结温度;引入烧结助剂Bi2O3后,使得ZrO2中的Y2O3含量减少,以致出现了含有单斜相氧化锆的第二相;而材料的致密化和单斜相氧化锆的出现,又使其具有良好的力学性能,同时对电学性能也有一定的影响.  相似文献   

20.
钇稳定氧化锆(YSZ)是一种抗氧化性和耐久性优异的陶瓷,够承受高温,非常适合作热防护材料。采用乳液/泡沫模板法将其制成具有微米级孔的多孔结构,再以氧化铝晶须或氧化锆纤维作为增强相,然后结合直写成型这种3D打印成型技术,又可在毫米级孔尺度上获得设计的自由。由此制备的梯度多孔结构,不仅可以增大材料的比表面积,减小体积密度,更能大大提高多孔YSZ的力学性能。研究增强体的类型、加入量及烧结温度对多孔氧化锆陶瓷微观形貌结构的影响,分析其与抗压强度的相互作用关系。结果表明,氧化铝晶须和氧化锆纤维的加入,均能有效提高多孔氧化锆陶瓷孔的抗压强度,晶须的增强效果更好。氧化锆纤维加入量为4wt%的多孔氧化锆陶瓷孔隙率最高,抗压强度提升最小,为166.6MPa。在1500℃烧结温度下,当氧化锆纤维加入量为8wt%时,抗压强度最大,达到269.36MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号