首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
固态倍频器是太赫兹源应用中的关键器件,如何利用非线性器件提高太赫兹倍频器件的效率是设计太赫兹固态电路的关键。本文介绍了利用肖特基二极管非线性特性设计固态太赫兹二倍频器的2种方法,即采用直接阻抗匹配和传输模式匹配设计了2种不同拓扑结构的170 GHz二倍频器,针对设计的结构模型,分别进行三维有限元电磁仿真和非线性谐波平衡仿真。仿真结果表明,在17 dBm输入功率的驱动下,倍频器在160 GHz~180 GHz输出频率范围内,倍频效率在15%左右,输出功率大于7 mW。最后对2种方法设计的倍频器结构进行了简单对比和分析,为今后太赫兹倍频研究和设计提供仿真方法。  相似文献   

2.
基于GaN太赫兹二极管芯片,采用非平衡式电路结构,设计了一款260 GHz三倍频器。采用GaN肖特基二极管芯片提高电路的耐受功率和输出功率;采用“减高+减宽”的输出波导结构抑制二次谐波;采用高低阻抗带线结构设计了倍频器的输入滤波器和输出滤波器。测试结果显示,该三倍频器在261 GHz峰值频率下,实现最大输出功率为69.1 mW,转换效率为3.3%,同时具有较好的谐波抑制特性。  相似文献   

3.
太赫兹技术是一个新兴的交叉研究领域。在过去20 年,太赫兹技术有了巨大的发展。倍频器是太赫兹差分接收机重要技术,主要运用在天文、大气和行星科学射频前端。太赫兹空白的存在主要因素是缺少高效太赫兹源和探测器。通过倍频器技术和放大技术,可以得到高稳定低相噪的倍频源。340 GHz 是太赫兹大气传输窗口之一,所以340 GHz 倍频源能够运用在各种通信成像系统中。肖特基二极管倍频源可以工作在常温和低温下。倍频器是倍频链路最关键的部分。通过理论分析和3D 电磁仿真设计了一个340 GHz 倍频器。实验得到最大输出功率为4.8 dBm,最大效率为3%,在331~354.5 GHz输出功率大于0 dBm。实验结果证明电路仿真和建模的可行性。  相似文献   

4.
太赫兹通信中本振链输出功率无法满足实际需求,因此提出一种基于肖特基变容二极管的宽带、高效率140 GHz二倍频器设计方案。该倍频器结构基于波导腔体石英基片微带电路的混合集成方式实现。采用三维有限元与非线性谐波平衡联合仿真方法,实现了倍频器的最优化设计。根据仿真结果,完成了140 GHz二倍频器的加工、制作与测试工作。实测结果表明,在20 dBm的驱动功率下,倍频器的输出功率最高达6.6 mW,倍频效率7.15%;输入功率23 dBm对应的最大输出功率可达11.2 mW。该器件的成功研制使得实现太赫兹通信中的本振链成为可能。  相似文献   

5.
太赫兹通信中本振链输出功率无法满足实际需求,因此提出一种基于肖特基变容二极管的宽带、高效率140 GHz 二倍频器设计方案。该倍频器结构基于波导腔体石英基片微带电路的混合集成方式实现。采用三维有限元与非线性谐波平衡联合仿真方法,实现了倍频器的最优化设计。根据仿真结果,完成了140 GHz二倍频器的加工、制作与测试工作。实测结果表明,在20 dBm的驱动功率下,倍频器的输出功率最高达6.6 mW,倍频效率7.15%;输入功率23 dBm对应的最大输出功率可达11.2 mW。该器件的成功研制使得实现太赫兹通信中的本振链成为可能。  相似文献   

6.
研制了一种平衡结构的太赫兹二倍频器,采用Teratech公司的AS1太赫兹平面肖特基二极管。在对太赫兹肖特基二极管建模和分析的基础上,结合HFSS和ADS软件对太赫兹二倍频器进行仿真。对该倍频器进行加工测试,实测结果表明,在180~192GHz,最大输出功率16.3mW,最大倍频效率为9.1%。  相似文献   

7.
针对太赫兹GaAs肖特基二极管倍频器芯片散热能力差导致输出功率低的问题,开展了GaAs/AlN异构集成太赫兹倍频器芯片研究。通过稳态热仿真发现,将肖特基二极管芯片衬底由GaAs替换为热导率更高的AlN可以降低结温。对芯片衬底替换工艺开展了研究,获得了GaAs/AlN异构集成太赫兹二极管。分别对基于GaAs衬底二极管和基于GaAs/AlN异构集成二极管的162 GHz倍频器开展功率性能测试对比。测试结果表明:装配GaAs衬底二极管的倍频器输入功率为200 mW时,输出功率最高为43.6 mW;而装配GaAs/AlN异构集成二极管的倍频器输入功率提高到316 mW,输出功率为72.4 mW。肖特基二极管由GaAs衬底替换为AlN衬底后耐受功率(输入功率)提高了约58%,倍频效率由21.8%提升至22.9%,输出功率也相应提升,验证了相比GaAs衬底肖特基二极管,GaAs/AlN异构集成太赫兹二极管的散热性能及耐受功率具有明显的优越性。  相似文献   

8.
本文介绍了一种基于砷化镓材料的高功率490~530 GHz单片集成三倍频器。基于提出的对称平衡结构,该三倍频器不仅可以实现良好的振幅和相位平衡,用来实现高效的功率合成,还可以在没有任何旁路电容的情况下提供直流偏置路径以保证高效倍频效率。同时,开展容差性仿真分析二极管关键电气参数与结构参数对倍频性能的影响研究,以便最大化提升倍频性能。最终,在大约80~200 mW的输入功率驱动下,研制的510 GHz三倍频,在490~530 GHz频率范围内,输出功率为4~16 mW,其中峰值倍频效率11%。在522 GHz频点处,该三倍频在218 mW的输入功率驱动下,产生16 mW的最大输出功率。该三倍频器后期将用于1 THz的固态外超外差混频器的本振源。  相似文献   

9.
基于GaAs肖特基势垒二极管(SBD)芯片,研制了工作频率为200~220 GHz的二倍频器。采用抑制奇次谐波的平衡式电路拓扑结构以提高转换效率;采用击穿电压为-9 V的GaAs SBD并结合多阳极结结构芯片以提高输出功率;采用低阻微带线以减小波导短路面处的阻抗失配;采用三维电磁场仿真与谐波仿真结合的方法对二倍频器进行仿真。制作了二倍频器样品并对其输出功率、转换效率以及高/低温特性进行测试。测试结果表明该二倍频器在200~220 GHz的转换效率均大于10%,在215 GHz下实现了13.5 mW的输出功率和23.6%的转换效率。该二倍频器具有宽频带、高转换效率以及高/低温工作稳定等特点,可应用于下一代太赫兹通信、雷达等设备。  相似文献   

10.
针对太赫兹通信及成像等系统对高集成度射频收发链路的需求,在自主研制的太赫兹肖特基二极管的基础上,建立了器件的精确模型,设计并制备出基于二极管的倍频/混频单片集成芯片,解决了传统二极管装配难度大、一致性差的难题,提高了器件的性能。成功研制出170 GHz、340 GHz倍频器和340 GHz混频器模块,并且开发出集成化的340 GHz发射与接收链路。发射端一体化模块实现了342 GHz功率为22 mW的输出,接收端一体化模块实现了330~350 GHz单边带变频损耗在10 dB上下。该模块的开发为未来太赫兹通信及成像技术的应用奠定基础。  相似文献   

11.
基于六阳极结反向串联型GaAs平面肖特基二极管,设计并实现了0.2 THz大功率二倍频器。肖特基二极管倒装焊接在50m石英电路上。采用电磁场和电路联合设计仿真获得了二倍频器的倍频效率。当入射功率在100 mW时,输出频率在190~225 GHz带内效率大于5%。在小功率(Pin100 mW)和大功率(Pin300 mW)注入条件下,测试了倍频电路的输出功率和倍频效率。在100 mW驱动功率下采用自偏压测试,最大输出功率为14.5 mW@193 GHz,对应倍频效率为14%;在300 mW驱动功率下采用自偏压测试,在188~195 GHz,输出功率大于10 mW,最大输出功率为35 mW@192.8 GHz,对应倍频效率为11%。  相似文献   

12.
A high efficiency and wideband 300 GHz frequency doubler based on six Schottky diodes is presented in this paper. This balanced doubler features a compact and robust circuit on a 5-μm-thick, 0.36-mm-wide, and 1-mm-long GaAs membrane, fabricated by LERMA-C2N Schottky process. The conversion efficiency is mainly better than 16% across the wide bandwidth of 266–336 GHz (3 dB fractional bandwidth of 24%) when pumping with 20–60 mW input power (P in) at the room temperature. A peak output power of 14.75 mW at 332 GHz with a 61.18 mW P in, an excellent peak efficiency of 30.5% at 314 GHz with 43.86 mW P in and several frequency points with outstanding efficiency of higher than 25% are delivered. This doubler served as the second stage of the 600 GHz frequency multiplier chain is designed, fabricated, and measured. The performance of this 300 GHz doubler is highlighted comparing to the state-of-art terahertz frequency doublers.  相似文献   

13.
基于四阳极结反向串联型GaAs平面肖特基二极管,设计并实现了0.2 THz宽带非平衡式二次倍频电路。肖特基二极管倒装焊接在75 m石英电路上。在小功率和大功率注入条件下,测试了倍频电路的输出功率和倍频效率。输入功率在10~15 mW时,通过加载正向偏置电压,在210~224 GHz,倍频效率大于3%,在212 GHz处有最高点倍频效率为7.8%。输入功率在48~88 mW时,在自偏压条件下,210~224 GHz带内倍频效率大于3.6%,在214 GHz处测得最大倍频效率为5.7%。固定输出频率为212 GHz,在132 mW功率注入时,自偏压输出功率最大为5.7 mW,加载反向偏置电压为-0.8 V时,输出功率为7.5 mW。  相似文献   

14.
An all solid-state 330 GHz ×6 × 2 × 2 frequency multiplying chain is constructed and tested and it is used as a local oscillator (LO) in 664 GHz radiometers for cirrus clouds and cloud ice detecting. The frequency multiplying chain consists of a W-band sextupler, followed by a power-combined amplifier which delivers 460–540 mW output power, and two cascaded 165 GHz and 330 GHz balanced frequency doublers. The 165 GHz two-ways power-combined doubler applies four three-anode in series GaAs Schottky diodes to generate 50–63 mW output power in the frequency range 160–176 GHz, and its tested typical efficiency is 11.5%. The cascaded 330 GHz doubler uses a four-anode in anti-series arranged GaAs diode to generate 2.5–4.5 mW output power in the frequency range 320–352 GHz, and its tested typical efficiency is 6.0% and the maximum value is 8.0% at 328 GHz. The output power of the multiplying chain is high enough to pump the 664 GHz heterodyne radiometer for space application.  相似文献   

15.
基于六阳极结反向串联型砷化镓平面肖特基容性二极管,采用平衡式二倍频器结构,成功研制出一种大功率150 GHz二倍频器。使用三维电磁场与非线性谐波平衡联合仿真方法,提高了仿真结果和实际的吻合度,并根据设计结果完成倍频器的加工、装配和测试。倍频器在输出频率为146~158 GHz下的倍频效率达到7%以上;在输出频率为154 GHz时,倍频效率达到12%,输出功率达到71 mW。  相似文献   

16.
何月  蒋均  陆彬  陈鹏  黄昆  黄维 《红外与激光工程》2017,46(1):120003-0120003(8)
太赫兹源的输出功率是限制太赫兹技术远距离应用的重要参数。为了实现高效的太赫兹倍频器,基于高频特性下肖特基二极管的有源区电气模型建模方法,利用指标参数不同的两种肖特基二极管,研制出了两种170 GHz平衡式倍频器。所采用的肖特基二极管有源结区模型完善地考虑了二极管IV特性,载流子饱和速率限制,直流串联电阻以及趋肤效应等特性。通过对两种倍频器仿真结果进行对比,完备地分析了二极管主要指标参数对倍频器性能的影响。最后测试结果显示两种平衡式170 GHz倍频器在155~178 GHz工作带宽内的最高倍频效率分别大于11%和24%,最高输出功率分别大于15 mW和25 mW。从仿真和测试结果表示,采用的肖特基二极管建模方法和平衡式倍频器结构适用于研制高效的太赫兹倍频器。  相似文献   

17.
研制了一种基于肖特基变容二极管的0.17 THz 二倍频器, 该器件为0.34 THz 无线通信系统收发前端提供了低相噪、低杂散的本振信号.倍频器结构基于波导腔体石英基片微带电路实现, 其核心器件是多结正向并联的肖特基变容二极管.文中采用结参数模型和三维电磁模型相结合的方式对二极管进行建模, 通过两种电路匹配方式实现了0.17 THz 二倍频器的最优化设计, 最终完成器件的加工及测试.测试结果表明, 在输入80~86 GHz, 20 dBm 的驱动信号下, 倍频器的最大输出功率达12.21 mW, 倍频效率11%, 输出频点为163 GHz;当前端输入功率达到饱和状态时, 该频点输出功率可达21.41 mW.  相似文献   

18.
介绍了一款基于GaAs肖特基二极管单片工艺的220 GHz倍频器的设计过程以及测试结果。为提高输出功率,倍频器采用多阳极结构,8个二极管在波导呈镜像对称排列,形成平衡式倍频器结构。采用差异式结电容设计解决了多阳极结构端口散射参数不一致问题,提高了倍频器的转换效率和工作带宽。对设计的倍频器进行流片、装配和测试,测试结果显示:倍频器在204~234 GHz频率范围内,转化效率大于15%;226 GHz峰值频率下实现最大输出功率为90.5 mW,转换效率为22.6%。设计的220 GHz倍频器输出功率高,转化效率高,工作带宽大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号