首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased packaging density, along with large-scale implementation of ball grid arrays (BGAs), chip scale packages and DCAs in portable products has resulted in the need for innovative techniques to increase the I/O density in printed circuit boards. With the development of high density interconnect (HDI), via-in-pad has emerged as one of the key enabling technologies for increasing the I/O density. Via-in-pad permits the use of sub-surface layers for fan out and consequently, smaller packages with higher I/O can be utilized in the design. Additionally, since traces no longer need to be routed between pads, the solder joint pitch can also be decreased. The reliability of via-in-pad under mechanical bend fatigue is examined in this study. Mechanical cycling fatigue reliability is especially critical for portable products where keypad actuation often induces repeated bending in the printed circuit board. HDI boards manufactured by both the photovia and the laser via processes were examined. A three dimensional, non-linear, parametric finite element model was developed to predict failure mechanisms. For the bend fatigue experiments, globtop BGA packages were mounted on HDI boards containing via-in-pad structures. The number of cycles required for material fatigue was obtained as a function of applied bending loads. Failure analysis was conducted to determine the failure modes. Experimental results were correlated with finite element predictions.  相似文献   

2.
The mechanical integrity of solder joint interconnects in PWB assemblies with micro-BGA, chip scale, and land grid array packages is being questioned as the size and pitch decrease. Some consumer products manufacturers have mechanically reinforced fine pitch package interconnects with an adhesive underfill, and others are evaluating the need for underfill on a case-by-case basis. Three-point cyclic bend testing provides a useful tool for characterizing the expected mechanical cycling fatigue reliability of PWB assemblies. Cyclic bend testing is useful for characterizing bending issues in electronic assemblies such as repetitive keypad actuation in cell phone products. This paper presents the results of three-point bend testing of PWB assemblies with fine pitch packages. The solder joints on ceramic components performed better than a laminate interposer component in bend testing, because of the stiffening effect of the ceramic packaging materials. The methodology of materials analyses of the metallurgy of solder interconnects following mechanical bending and thermal cycle testing is described. The microstructure and fracture surfaces of solder joint failures in bend test samples differed significantly from thermal cycle test samples.  相似文献   

3.
微型球栅阵列(μBGA)是芯片规模封装(CSP)的一种形式,已发展成为最先进的表面贴装器件之一。在最新的IxBGA类型中使用低共晶锡.铅焊料球,而不是电镀镍金凸点。采用传统的表面贴装技术进行焊接,研讨μBGA的PCB装配及可靠性。弯曲循环试验(1000~1000με),用不同的热因数(Qη)回流,研究μBGA、PBGA和CBGA封装的焊点疲劳失效问题。确定液相线上时间,测定温度,μBGA封装的疲劳寿命首先增大,接着随加热因数的增加而下降。当Q。接近500S·℃时,出现寿命最大值。最佳Qη范围在300-750s·℃之间,此范围如果装配是在氮气氛中回流,μBGA封装的寿命大于4500个循环。采用扫描电子显微镜(SEM),来检查μBGA和PBGA封装在所有加热N数状况下焊点的失效。每个断裂接近并平行于PCB焊盘,在μBGA封装中裂纹总是出现在焊接点与PCB焊盘连接的尖角点,接着在Ni3Sn4金属间化合物(IMC)层和焊料之间延伸。CBGA封装可靠性试验中,失效为剥离现象,发生于陶瓷基体和金属化焊盘之间的界面处。  相似文献   

4.
The micro-ball grid array (/spl mu/BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by ordinary surface mount technology. In the latest /spl mu/BGA type, eutectic tin-lead solder ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the /spl mu/BGA's PCB, which is soldered by conventional surface mount technology, has been studied in this paper. The bending cycle test (1000 /spl mu//spl epsi/ to -1000 /spl mu//spl epsi/), is used to investigate the fatigue failure of solder joints of /spl mu/BGA, PBGA, and CBGA packages reflowed with different heating factors (Q/sub /spl eta//), defined as the integral of the measured temperature over the dwell time above liquidus (183/spl deg/C). The fatigue lifetime of the /spl mu/BGA assemblies firstly increases and then decreases with increasing heating factor. The greatest lifetime happens while Q/sub /spl eta// is near 500 second-degree. The optimal Q/sub n/ range is between 300 and 750 s/spl deg/C. In this range, the lifetime of the /spl mu/BGA assembly is greater than 4500 cycles if the assemblies are reflowed in nitrogen ambient. SEM micrographs reveal that both /spl mu/ & P-BGA assemblies fail in the solder joint at all heating factors. All fractures are near and parallel to the PCB pad. In the /spl mu/BGA assemblies cracks always initiate at the point of the acute angle where the solder joint joins the PCB pad, and then propagate in the section between the Ni/sub 3/Sn/sub 4/ intermetallic compound (IMC) layer and the bulk solder. In the CBGA assembly reliability test, the failures are in the form of delamination, at the interface between the ceramic base and metallization pad.  相似文献   

5.
Solder joint fatigue failure is a serious reliability concern in area array technologies, such as flip chip and ball grid array packages of integrated-circuit chips. The selection of different substrate materials could affect solder joint thermal fatigue lifetime significantly. The reliability of solder joint in flip chip assembly for both rigid and compliant substrates was evaluated by accelerated temperature cycling test. Experimental results strongly showed that the thermal fatigue lifetime of solder joints in flip chip on flex assembly was much improved over that in flip chip on rigid substrate assembly. Debonding area of solder joints in flip chip on rigid board and flip chip on flex assemblies were investigated, and it was found that flex substrate could slow down solder joint crack propagation rate. The mechanism of substrate flexibility on improving solder joint thermal fatigue was investigated by thermal mechanical analysis (TMA) technique. TMA results showed that flex substrate buckles or bends during temperature cycling and this phenomenon was discussed from the point of view of mechanics of the flip chip assembly during temperature cycling process. It was indicated that the thermal strain and stress in solder joints could be reduced by flex buckling or bending and flex substrates could dissipate energy that otherwise would be absorbed by solder joints. It was concluded that substrate flexibility has a great effect on solder joint reliability and the reliability improvement was attributed to flex buckling or bending during temperature cycling.  相似文献   

6.
Solder joint fatigue failure is a serious reliability concern in area array technologies, such as flip chip and ball grid array packages of integrated-circuit chips. The selection of different substrate materials could affect solder joint thermal fatigue life significantly. The mechanism of substrate flexibility on improving solder joint thermal fatigue was investigated by thermal mechanical analysis (TMA) technique and finite element modeling. The reliability of solder joints in real flip chip assembly with both rigid and compliant substrates was evaluated by accelerated temperature cycling test. Finite element simulations were conducted to study the reliability of solder joints in flip chip on flex assembly (FCOF) and flip chip on rigid board assembly (FCOB) applying Anand model. Based on the finite element analysis results, the fatigue lives of solder joints were obtained by Darveaux’s crack initiation and growth model. The thermal strain/stress in solder joints of flip chip assemblies with different substrates were compared. The results of finite element analysis showed a good agreement with the experimental results. It was found that the thermal fatigue lifetime of FCOF solder joints was much longer than that of FCOB solder joints. The thermal strain/stress in solder joints could be reduced by flex buckling or bending and flex substrates could dissipate energy that otherwise would be absorbed by solder joints. It was concluded that substrate flexibility has a great effect on solder joint reliability and the reliability improvement was attributed to flex buckling or bending during temperature cycling.  相似文献   

7.
Electrolytic and electroless Ni/Au are common pad surface finishes on area array (BGA or CSP) packages and printed wiring boards (PWB). The electroless nickel/immersion gold (ENIG) process often is implemented when there is insufficient space to allow bussing for the more common electrolytic Ni/Au plating. The ENIG process continues to be used despite evidence that it may cause catastrophic, brittle, interfacial solder joint fractures. In this investigation a plastic ball grid array (PBGA) test vehicle is used to compare quality and reliability of standard and experimentally modified ENIG surface finishes. The standard electrolytic Ni/Au surface finish is used as the control cell for the experiment. Ball shear tests and optical and scanning electron microscopy are performed on as-received and thermally preconditioned packages to evaluate package quality prior to assembly. Accelerated temperature cycling (0/+100/spl deg/C and -40/+125/spl deg/C) is used to evaluate solder joint attachment reliability. Detailed failure mode analysis is used to compare the fracture modes in the ball shear and thermal cycled samples in the electroless and electrolytic packages. The results are discussed in terms of the failure modes and the characteristics of the different Ni/Au surface finishes.  相似文献   

8.
To evaluate various Pb-free solder systems for leaded package, thin small outline packages (TSOPs) and chip scale packages (CSPs) including leadframe CSP (LFCSP), fine pitch BGA (FBGA), and wafer level CSP (WLCSP) were characterized in terms of board level and mechanical solder joint reliability. For board level solder joint reliability test of TSOPs, daisy chain samples having pure-Sn were prepared and placed on daisy chain printed circuit board (PCB) with Pb-free solder pastes. For CSPs, the same composition of Pb-free solder balls and solder pastes were used for assembly of daisy chain PCB. The samples were subjected to temperature cycle (T/C) tests (-65/spl deg/C/spl sim/150/spl deg/C, -55/spl deg/C/spl sim/125/spl deg/C, 2 cycles/h). Solder joint lifetime was electrically monitored by resistance measurement and the metallurgical characteristics of solder joint were analyzed by microstructural observation on a cross-section sample. In addition, mechanical tests including shock test, variable frequency vibration test, and four point twisting test were carried out with daisy chain packages too. In order to compare the effect of Pb-free solders with those of Sn-Pb solder, Sn-Pb solder balls and solder paste were included. According to this paper, most Pb-free solder systems were compatible with the conventional Sn-Pb solder with respect to board level and mechanical solder joint reliability. For application of Pb-free solder to WLCSP, Cu diffusion barrier layer is required to block the excessive Cu diffusion, which induced Cu trace failure.  相似文献   

9.
Chip scale package (CSP) and fine pitch ball grid array (BGA) packages have been increasingly used in portable electronic products such as mobile cell phones and PDA, etc. Drop impact which is inevitable during its usage could cause not only housing crack but also package to board interconnect failure, such as BGA solder breaks. Various drop tests have been used to ensure high reliability performance of packaging to withstand such impact and shock load. Due to extreme difficulty in directly measuring responses in solder joint during drop shock event, computer simulation based modeling approach has been increasingly played an important role in evaluating product reliability performance during product development. An advanced modeling technique with a comprehensive failure criterion including high strain rate effect needs to be developed to quantitatively evaluate package reliability performance especially in cross comparisons between different board and system level designs. In this paper, three drop tests have been modeled, namely, bare board drop, board with fixture drop or shock, and system level phone drop. Submodeling and explicit-implicit sequential modeling techniques are used to characterize the dynamic responses of CSP/BGA packages in different board designs. Failure criteria and effects of strain rate and edge support on BGA in multicomponent boards are also investigated. A validation test with data acquisition is used to correlate the test results with numerical results.  相似文献   

10.
A new reflow parameter, heating factor (Qη), which is defined as the integral of the measured temperature over the dwell time above liquidus, has been proposed in this report. It can suitably represent the combined effect of both temperature and time in usual reflow process. Relationship between reliability of the micro-ball grid array (micro-BGA) package and heating factor has been discussed . The fatigue failure of micro-BGA solder joints reflowed with different heating factor in nitrogen ambient has been investigated using the bending cycle test. The fatigue lifetime of the micro-BGA assemblies firstly increases and then decreases with increasing heating factor. The greatest lifetime happens at Qη near 500 s °C. The optimal Qη range is between 300 and 750 s °C. In this range, the lifetime of the micro-BGA assemblies is greater than 4500 cycles. SEM micrographs reveal that cracks always initiate at the point of the acute angle where the solder joint joins the PCB pad.  相似文献   

11.
In this paper we present a method to determine the stress in BGA solder joints on complex, real assembled circuit boards.To be able to investigate the mechanical effects of post-reflow assembly within the solder joints of BGA components, it is necessary to undertake a mechanical investigation at board level by taking into consideration the effect of the adjacent components and the interconnection layer layouts.In our project, we have developed a method of how to investigate the board level deformation strength of BGA joints. The elastic properties of a real assembled circuit board and of a circuit bare board are measured; an FEM model is then created, both of the bare board and of the assembled printed circuit board taking into account the layout of the interconnection layers. The advantage of this PCB FEM model is that the deformation of a PCB of any size and for any load can be calculated quickly using any ordinary computer. In our project, we also have created another detailed FEM model for the BGA solder joints.Using the constructed FEM models, we are able to determine the stress in BGA solder joints on a real electronic product for a typical type of load (i.e. bending of PCB) thereby verifying our method. Since the simulated results correspond well to previous literature written on this topic, we consider that our method is appropriate for calculating stress in the solder joints of multi-lead components on complex, fully assembled circuit boards.  相似文献   

12.
A mechanical deflection system (MDS) was developed for highly accelerated tests to evaluate the solder joint fatigue performance in printed circuit board assemblies. The MDS test system can be used for design verification and qualification tests for solder joint reliability. Cyclic twisting deformation is imposed on an assembled printed circuit board (PCB) at isothermal conditions. The MDS test technique makes a significant contribution to reducing solder joint reliability testing cycle time. Fatigue performance of the PBGA solder joints subjected to the MDS test was investigated by three-dimensional finite element modeling. The solder joint fatigue lives were computed for several different MDS test conditions  相似文献   

13.
Flip-chip carriers have become the preferred solution for high-performance, application-specific integrated circuit and microprocessor devices. Typically, these are packaged in organic or ceramic ball grid array (BGA) packages, which cover a wide range of package input/output (I/O) capabilities required for high-performance devices, typically, between 300 to more than 1,600 I/O. Recently, there has been a move toward Pb-free solders as replacement alloys for standard, eutectic Sn/Pb and other Pb-based BGAs. The leading solder that has emerged from various Pb-free solder evaluations by industry and academic consortia is the Sn/Ag/Cu (SAC) alloy. One of the primary issues with changing solders is the reliability of the joints when these are subjected to thermomechanical fatigue (TMF). This evaluation has previously been conducted on SAC ceramic ball grid array (CBGA) assemblies in a 1.27-mm pitch.1 However, with the need to shrink the I/O pitch to accommodate higher wiring density, it has become increasingly important to conduct TMF reliability assessments in a 1-mm pitch format. This paper describes such an evaluation conducted using SAC BGA assemblies. The results show that, for a 1-mm pitch, the Pb-free SAC CBGA solution provides superior reliability as compared to the standard Sn/Pb CBGA solutions. This finding is an added incentive for a new CBGA offering employing the new Pb-free, SAC, single-alloy, self-aligning system.  相似文献   

14.
The trend to reduce the size of electronic packages and develop increasingly sophisticated electronic devices with more, higher density inputs/outputs (I/Os), leads to the use of area array packages using chip scale packaging (CSP), flip chip (FC), and wafer level packaging (WLP) technologies. Greater attention has been paid to the reliability of solder joints and the assembly yield of the surface mounting process as use of advanced electronic packaging technologies has increased. The solder joint reliability has been observed to be highly dependent on solder joint geometry as well as solder material properties, such that predicting solder reflow shape became a critical issue for the electronic research community. In general, the truncated sphere method, the analytical solution and the energy-based algorithm are the three major methods for solder reflow geometry prediction. This research develops solder joint reliability design guidelines to accurately predict both the solder bump geometry and the standoff height for reflow soldered joints in area array packages. Three simulation methods such as truncated-sphere theory force-balanced analytical solution and energy-based approach for prediction of the solder bump geometry are each examined in detail, and the thermal enhanced BGA (TBGA) and flip chip packages are selected as the benchmark models to compare the simulation and experimental results. The simulation results indicate that all three methods can accurately predict the solder reflow shape in an accurate range  相似文献   

15.
杨建生 《电子与封装》2009,9(11):12-16,20
文中采用传统的表面贴装技术进行焊接,研讨μBGA的PCB装配及可靠性。弯曲循环试验(1000με~-1000με),用不同的热因数(Qη)回流,研究μBGA、PBGA和CBGA封装的焊点疲劳失效问题。确定液相线上时间,测定温度,μBGA封装的疲劳寿命首先增大,接着随加热因数的增加而下降。当Qη接近500s·℃时,出现寿命最大值。最佳Qη范围在300s·℃~750s·℃之间,此范围如果装配是在氮气氛中回流,μBGA封装的寿命大于4500个循环。采用扫描电子显微镜(SEM),来检查μBGA和PBGA封装在所有加热因数状况下焊点的失效。每个断裂接近并平行于PCB焊盘,在μBGA封装中裂纹总是出现在焊接点与PCB焊盘连接的尖角点,接着在Ni3Sn4金属间化合物(IMC)层和焊料之间延伸。CBGA封装可靠性试验中,失效为剥离现象,发生于陶瓷基体和金属化焊盘之间的界面处。  相似文献   

16.
The paper describes a study on the solder joint mechanical reliability evaluation of two grid array packages: a micro land grid array (μLGA) and a micro ball grid array (μBGA) for mobile phones. The μGA packages considered in this paper are at early development stages and significant changes are expected in the future. The study was carried out to evaluate whether solder joints can stand mechanical stresses induced on PCBs during normal use. Stresses induced in normal use can include: thermal changes and stresses during indoor and outdoor use, in keypad pressing, carrying phones in (tight) jeans pockets, in accidentally dropping phones, etc. The above was studied by subjecting PCBs to two types of mechanical stresses. These were cyclic twisting and bending PCBs with μBGAs to failure, while continuously monitoring the electrical continuity. Cyclic twisting and bending tests were carried at two levels.Time to failure test data was analyzed using the Weibull model. Results indicate that it is most unlikely to anticipate μBGA solder joint failures in normal use. Solder joint failures were analysed by micro sectioning and X-raying. Failure analysis revealed as expected that solder joint failure occurs primarily due to fatigue. It is recommended to continue tests with more representative, updated packages and to carry out comparative tests with current technology PCBs.  相似文献   

17.
本文对比了两组经不同材料充胶的BGA组件和一组未充胶BGA组件在机械弯曲中的可靠性,包括三点弯试验和机械弯曲疲劳试验。结果发现在机械弯曲可靠性试验中,U1、U2材料的填充均能提高焊点的机械弯曲可靠性,并且U1的效果更好。通过对试样剖面显微观察,发现在用U1充胶的样品中,失效发生在焊点、PCB板处;而在其它两组样品中,失效发生在焊点、PCB板和铜焊盘三处。  相似文献   

18.
The effect of different reflow profiles on the reliability of lead-free (LF) Sn-3.0 Ag-0.5 Cu (wt.%) (SAC 305) ball grid array (BGA) devices assembled with a SnPb eutectic paste was investigated. The memory modules in a back-to-back configuration were reflowed on standard graphic cards finished with immersion silver (IAg) or hot air solder leveling (HASL) coatings. The reflow peak temperatures ranged from 209$^circ$C to 227$^circ$C, while the time above liquidus (TAL) varied from 45 to 80 s. Depending on the reflow conditions, the solder interconnects displayed varied degrees of SnPb and LF solders intermixing. It was established that in order to receive a homogeneous solder alloy, the reflow peak temperature had to be in the 218$^circ$C–222$^circ$C range. The reliability of solder interconnects of memory modules was assessed by subjecting the cards to 1500 cycles of accelerated thermal-cycling with a profile from 0$^circ$C to 100$^circ$C. It was found that the control SnPb/SnPb assemblies displayed superior reliability to that of the mixed assemblies. Regardless of the degree of homogeneity of the BGA balls, the predominant failure mode of the mixed solder joints was interfacial cracking through a Pb-rich phase near the intermetallic layer. In contrast, only partial cracks propagating diagonally through the bulk solder were present on the control boards. It was concluded that a combination of state of stress and segregation of the Pb-rich phase at the interface was responsible for the shortened thermal–mechanical fatigue life of the mixed solder interconnects.  相似文献   

19.
The ceramic ball grid array (CBGA) packages are typically used for high I/O count area array assemblies. As the package size is large, the distance to neutral point is also high resulting in a large thermal deformation mismatch between the CBGA package and the printed circuit board (PCB). In order to cope with this problem, a special solder joint connection is used. As CBGA assemblies are used for high pin count assemblies, a full 3D thermo-mechanical modelling of an assembly to an FR4 board is not possible anymore. Therefore, a modified micro–macro methodology is proposed where only the critical solder joint is modelled in detail, while the other connections are replaced by equivalent connections. For several CBGA configurations, simulation results are correlated to thermal cycling test results. Finally, a parameter sensitivity study shows that the PCB properties have a significant influence on the solder joint reliability.  相似文献   

20.
BGA焊点的形态预测及可靠性优化设计   总被引:3,自引:3,他引:0  
制定了BGA(球栅阵列)焊点的形态预测以及可靠性分析优化设计方案,对完全分布和四边分布的两种BGA元件,通过改变下焊盘的尺寸得到不同钎料量的焊点,并对其形态进行了预测,建立了可靠性分析的三维力学模型。采用有限元方法分析了元件和焊点在热循环条件下的应力应变分布特征,预测了不同种类和不同形态的BGA焊点的热疲劳寿命,由此给出了最佳的上下焊盘比例范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号