首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了用于分析电磁散射问题的快速多极算法(FMA)和多层快速多极算法(MLFMA)的基本思想与基本步骤。通过计算实例表明,快速多极算法在计算速度和存贮要求方面比矩量法有明显优势,适合于在现有计算机条件下求解电大尺寸目标的散射问题。  相似文献   

2.
电大尺寸多柱体电磁散射问题的一种快速混合算法--MEI+FMM   总被引:1,自引:0,他引:1  
本文提出了一种改进的快速迭代MEI(不变性测试方程)算法用于分析电气大尺寸多柱体的散射问题,在此算法中我们首次将快速多极子技术(FMM)用于加速多柱体之间多次散射场的计算。应用本算法计算了柱体周长为几千波长的多柱体散射场。实际计算结果显示,一方法与原有的直接计算方法具有几乎同样的精度,而速度提高了两个数量级。  相似文献   

3.
张跃江  龚中麟 《微波学报》2000,16(3):272-277,254
采用有限元-快速多极混合算法分析了介质涂层电大尺寸导体柱的电北散射特性。与有限元-矩量法相比,快速多极算法将计算复度从O(N^2)降低到O(N^1.5),大大加快计算速度,减少存储量。计算表明该混合算法对电大复杂涂敷目标电磁我伯分析是灵活而有效的。  相似文献   

4.
三维大纵横比目标散射的快速精确求解   总被引:5,自引:4,他引:1  
采用积分方程法严格求解三维大纵横比目标的电磁散射。在积分方程法的迭代求解中用快速我极子法(FMM)加速矩阵与矢量的相乘计算,同时运用快速傅里叶变换(FFT)进一步提高快速多极子方法中的转换预计算,数值结果表明:这种快速多极子法-快速傅立叶变换方法(FMM-FFT)特别适合于三维大纵横比目标的散射求解。  相似文献   

5.
FMM算法用于二维复杂散射体的RCS计算   总被引:2,自引:2,他引:0  
利用快速多极子算法(FMM)计算任意形状二维电大尺寸导体加介质体目标的电磁散射,介质体为镶嵌在电大尺寸金属体上的有耗介质。建立金属一介质体的混合积分方程,用共轭梯度法和场量叠代的方法计算散射场,在叠代过程中用快速多极子方法,大大降低计算时间和减小内存要求。数据结果表明该方法的准确和高效。  相似文献   

6.
MEI系数的快速算法   总被引:2,自引:1,他引:1  
不变性测试方程法已被证明是解决电磁问题的一种有效方法。目前电大尺寸问题中MEI系数的计算已成为一个瓶颈。提出了一个快速算法用于加速MEI系数的计算,它使用快速多极子方法计算测试子的散射场,使得MEI系数的计算速度从O(N^2)变为O(N^1.5Log2N)。  相似文献   

7.
谭云华  周乐柱 《电子学报》2004,32(4):620-624
本文发展了一种能有效分析非均匀各向异性复杂目标的电磁散射特性的三维快速算法;该算法在切向矢量有限元、即边棱元的基础上,采用近年来发展起来的快速多极子算法加速问题的求解,大大降低了计算复杂度,并减小了计算内存.计算实例表明了该方法的有效性和可靠性.  相似文献   

8.
快速分析电大腔体电磁散射的混合算法   总被引:2,自引:0,他引:2  
为提高电大腔体电磁散射分析的效率,提出将迭代物理光学法(IPO)与快速多极子方法(FMM)相结合的混合算法IPO+FMM,给出该混合算法的数学模型推导,该算法可将每迭代步的计算量由O(N^2)降到O(N^1.5),最后分析了二种不同形状的电大尺寸腔体的雷达散射截面。数值结果表明,该混合算法与IPO算法相校,精度相当但效率有显著提高。  相似文献   

9.
张跃江  龚中麟 《微波学报》2000,16(3):272-277
采用有限元-快速多极混合算法分析了介质涂层电大尺寸导体柱的电磁散射特性。与有限元-矩量法相比,快速多极算法将计算复杂度从O(N2)降低到O(N1.5),大大加快计算速度,减少存储量。计算表明该混合算法对电大复杂涂敷目标电磁特性的分析是灵活而有效的。  相似文献   

10.
自适应多层快速多极子算法及其并行算法   总被引:3,自引:0,他引:3  
在多层快速多极子算法的基础上提出了一种改进的电大问题电磁散射快速算法及其并行算法.算法中将基函数和权函数分别用不同空间位置上的点源函数展开,使各部分的积分计算得到大大简化,所有转移过程可由快速傅里叶变换计算完成,同时还给出了该算法的并行化算法.数值结果说明了算法的有效性.  相似文献   

11.
虽然快速多极子算法FMM(Fast Multipole Method)和多层快速多极子算法MLFMA(Multi-Level Fast Multipole Algorithm)是解决复杂目标电磁散射问题比较有效的方法,但是当问题的规模较大时,传统的串行FMM 和MLFMA难以胜任.本文在工作站网络系统NOW(Network Of Workstation)上采用并行处理技术来解决电大尺寸复杂目标电磁散射问题.结果表明:本文提出的并行解决方案与国内外相关成果相比不仅更具实用性,并行效率达到54%以上,且解决了串行方法难以解决的电磁散射问题,本文在四台DEC工作站构成的NOW系统上用32小时完成了未知量为160,000的雷达散射截面的计算.  相似文献   

12.
本文介绍基于多层快速多极子方法(MLFMA)分析框架下的高效处理新方法和相关研究成果,重点讨论用于厚介质层散射分析的电流磁流混合场积分方程(JMCFIE)、用于多薄层介质散射的多层薄介质层(TDS)边界条件方法及其应用等;最后介绍了所研发的P-UEST软件及其在隐身飞行目标散射特性计算中的应用成果。  相似文献   

13.
采用自适应多层快速多极子算法分析电大尺寸组合体的雷达散射截面。推导了组合体表面的积分方程,通过将基函数和权函数分别用不同空间位置上的点源函数展开,自适应多层快速多极子算法实现了阻抗积分的快速计算,通过采用射线传播法,远场近似和对称性计算法则使转移因子的计算效率大大提高,所有转移过程可由快速傅里叶变换计算完成。这种算法计算组合体散射时所需的计算时间和内存显著降低,且数值计算结果和实际测试结果吻合良好。  相似文献   

14.
多层快速多极子法是基于矩量法的快速算法,具有较低的计算复杂度和存储复杂度,被广泛应用于目标电磁散射特性分析。对于复杂结构电磁目标,由于矩阵条件数较差,往往存在迭代收敛慢甚至不收敛的问题。针对这一情况,文中利用快速多极子的近区矩阵,结合稀疏矩阵方程求解构造了一种高效预条件。数值实例表明该方法相比于块对角预条件效果更好,能有效加速多层快速多极子迭代过程。  相似文献   

15.
倾斜双垂尾L频段电磁散射特点分析   总被引:2,自引:0,他引:2  
利用低散射载体,应用电磁仿真手段分析隐身飞机所采用的倾斜双垂尾的电磁散射特点。建立典型倾斜双垂尾模型,采用多层快速多极子算法(MLFMM)进行仿真计算,获得其方位角特性及雷达散射截面(RCS)量级。针对尾翼位置、倾斜角度、边缘后掠角等尾翼关键几何设计参数,建立变参数模型并进行多方案仿真。基于计算结果,分析参数敏感性,获得以上设计参数对RCS的影响规律及具体影响量级,为隐身性能约束下的尾翼设计提供参考。  相似文献   

16.
该文提出了一种高效混合近似算法计算太赫兹频段无限薄金属板的电磁散射特性。在太赫兹低频段,金属目标可以被视为具有微粗糙表面的理想导体,散射场可以分为相干场和非相干场。该文采用物理光学法结合截断劈增量长度绕射系数法和微扰法来计算金属板的电磁散射分布。基于蒙特卡洛方法,分别利用多层快速多极子和提出的混合算法计算太赫兹低频段金属板的雷达散射截面,仿真结果表明该文提出的混合算法能够高效快速地给出太赫兹低频段金属板的电磁散射特性。   相似文献   

17.
为提高合成孔径雷达(SAR)图像仿真效果,针对SAR图像中舰船目标雷达散射截面(RCS)计算的精度和效率问题,在利用几何建模方法构建三维舰船模型的基础上,采用并行多层快速多极子算法(MLFMA)计算了舰船目标RCS并分析了该算法的并行加速比。仿真实验表明,并行MLFMA算法适用于高频范围内较大尺寸舰船目标RCS的计算,比物理光学法(PO)和物理光学与矩量混合算法(PO—MOM)具有更高的计算精度且并行方案能明显提高求解目标RCS的效率。  相似文献   

18.
针对曲面共形阵列结构电磁散射特性的高效、精确仿真分析需求,提出了一种并行综合函数矩量法处理方案.该方法是传统电磁经典数值算法——矩量法的一种改进形式,通过几何区域分解处理和综合基函数的方式极大降低了算法的内存消耗,使得单机分析电大尺寸问题和大规模阵列问题成为可能.更为重要的是,针对周期阵列结构,该方法具备综合函数复用特性和多区域并行处理特性,能够大大提高算法的综合处理效率.一个6×11的柱面共形贴片阵列被用于验证所提方法的性能,仿真结果表明,对于周期阵列结构,该方法的计算精度与多层快速多极子算法相当,虽然计算效率略低于多层快速多极子方法,但内存消耗比多层快速多极子方法低一个数量级.  相似文献   

19.
多层快速多极子算法(MLFMA)在计算含复杂细节结构目标的散射问题时,求解效率会迅速下降。本文介绍了快 速笛卡尔展开(ACE)算法及其与MLFMA 的结合,使得原先MLFMA 的最细层能够再局部细分,加速了阻抗矩阵的填充 和迭代求解。本文将该混合算法应用于求解含复杂细节结构目标的电磁散射问题,包括具有尖端的杏仁核和由复杂带线 结构构成的频率选择表面,计算实例验证了该方法求解效率的提高和内存开销的减少,以及算法的可靠性和高效性。  相似文献   

20.
矩量法(MOM)在求解电磁场散射问题时,当未知量数目比较大时,其内存占用和计算时间非常大.基于最佳一致逼近理论构造了高阶矩量法,并引入了计算统一设备架构(CUDA)技术,在图形处理器(GPU)上实现了并行加速计算二维电磁散射问题.实例结果表明,在与快速多极子算法(FMM)相对比下,该方法在较低剖分的情况下,具有很高的计算精度,并且在阻抗矩阵填充和矩矢相乘时的速度大大提升,适用于电大尺寸目标的散射问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号