首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper an approach is presented to the speed control of permanent magnet synchronous motors without mechanical transducers. The rotor position, which is an essential component of any vector control scheme, is calculated through the instantaneous stator flux position and an estimated value of the load angle. A closed-loop state observer is implemented to compute the speed feedback signal. Experimental results on a laboratory tested motor drive are presented to validate the proposed procedure  相似文献   

2.
The control of an induction motor is a difficult problem, since the dynamics of the induction motor are nonlinear, the rotor electrical state variables (i.e., rotor fluxes or currents) are usually unavailable for measurement, and the motor parameters can vary significantly from their nominal values. The main purpose of this paper is to develop a control algorithm that forces the induction motor to track time-varying speed, position, and flux trajectories without knowledge of the rotor electrical state variables. To achieve this, a passivity-based method is developed. The key point with this method is the identification of terms, known as workless forces, which appear in the dynamic equations of the induction motor but do not have any effect on the energy balance equation of the induction motor. These terms do not influence the stability properties of the induction motor and, hence, there is no need to cancel them with feedback control. This leads to a simpler control structure and enhances the robustness of the control system. Experimental results show that the passivity-based method provides close tracking of time-varying speed, position, and flux trajectories without knowledge of the rotor electrical state variables  相似文献   

3.
This paper presents a sensorless speed regulation scheme for a permanent-magnet synchronous motor (PMSM) based solely on the motor line currents measurements. The proposed scheme combines an exact linearization-based controller with a nonlinear state observer which estimates the rotor position and speed. Moreover, the stability of the closed-loop system, including the observer, is demonstrated through Lyapunov stability theory. The proposed observer has the advantage of being insensitive to rotation direction. It is shown how a singularity at zero velocity appears in the scheme and how it can be avoided by switching smoothly from the observer-based closed-loop control to an open-loop control at low velocity. The system performance is tested with an experimental setup consisting of a PMSM servo drive and a digital-signal-processor-based controller for both unidirectional and bidirectional speed regulation  相似文献   

4.
A field-oriented control scheme for an induction motor with a linear quadratic optimal regulator and a robust neural network estimator is proposed. The state feedback is designed by using the synchronous frame motor model. The number of the states is increased in order to take into account the presence of two integrators on the flux and torque errors. The resulting model is suitably simplified and the corresponding approximations are discussed. The procedure proposed is shown to be suitable also for the design of the state feedback via the pole placement technique. A comparison with standard proportional integral regulators is provided. The rotor flux is estimated by using a robust neural network observer. The network training set is suitably designed in order to preserve the drive effectiveness also in the presence of large parameter uncertainties. The robust neural observer is compared with an extended Kalman filter and a standard neural network observer. Using a 250 kW induction motor as a case study, the simulation results show the effectiveness of the proposed solution, both during transient and steady-state operating conditions  相似文献   

5.
A new sensorless scheme for high-performance speed control of permanent-magnet ac motors (PMACMs) driving an unknown load is proposed. This scheme uses an extended nonlinear reduced-order observer to estimate the induced electromotive force (EMF) and load torque. From the estimated variables, the rotor position, the rotor speed, and the position derivative of flux are calculated and are used to close the control loop. In order to improve the drive performance, the estimated load torque is incorporated as a feedforward signal in the closed control loop. In addition, the proposed sensorless PMACM drive allows the torque-ripple and copper-loss minimization for motors with an arbitrary EMF waveform. Simulation and experimental results to validate the proposal are presented in this paper.  相似文献   

6.
Based on the general nonlinear magnetizing model (GNMM) from our previous research work, an improved method of detecting rotor position for sensorless control of SRMs in super-high speed operation has been developed. With minimum input data, the approximated GNMM is obtained and the rotor speed estimated. Then the rotor position is detected by the motion equation. To remove rotor position error, the proposed scheme updates the reference at critical points using the flux observation. Further, the GNMM is adaptively tuned based on the updated information. The improved rotor position detection method has been implemented by fully exploring the computation power of the modern DSP. Laboratory verification on different types of SRMs with sensorless control up to 20000 rpm is accomplished.  相似文献   

7.
In the speed sensorless control of the induction motor, the machine parameters (especially rotor resistance R2) have a strong influence on the speed estimation. It is known that the simultaneous estimation of the rotor speed and R2 is impossible in the slip frequency type vector control, because the rotor flux is constant. But the rotor flux is not always constant in the speed transient state. In this paper, the R2 estimation in the transient state without signal injection to the stator current is proposed. This algorithm uses the least mean square algorithm and the adaptive algorithm, and it is possible to estimate R2 exactly. This algorithm is verified by the digital simulations and experiments  相似文献   

8.
A self-tuning control scheme for stator-flux field-oriented induction machine drives in electric vehicles operating over a wide speed range is discussed in this paper. The stator flux can be determined accurately from the terminal voltage when the machine is operating at high speed. However, at low speed, the stator resistance must be known to calculate the stator flux. The problem of calculating the stator flux accurately over the entire speed range is addressed. The rotor flux can be found from the machine speed and rotor time constant. The stator flux, at low speed, is then calculated directly from the rotor flux. By alternating between these two methods of determining the stator flux, a self-tuning operation is achieved, wherein the stator and rotor resistances are periodically updated. Since both methods of determining the stator flux are forced to track one another, a smooth transition between flux estimators is obtained. The torque and flux are then controlled in a deadbeat fashion. Good torque control over a wide speed range can therefore be obtained. With the proposed scheme, the advantages of direct torque control are obtained over the entire speed range with the addition of a speed sensor  相似文献   

9.
This paper considers both flux and rotor position estimations for sensorless control of delta-connected cage induction machines (IMs) at low and zero frequency operation. The variation of leakage inductance due to either saturation or rotor slotting is tracked by measuring the derivative of the zero sequence current in response to the application of appropriate voltage test vectors. The method requires only a single extra sensor. It requires access to machine phase windings and is appropriate for integrated-type induction motor drives. Both a closed-slot and an open-slot machine is used to demonstrate rotor flux and rotor position tracking, respectively. Experimental results are presented showing sensorless torque control and sensorless speed and position control at low and zero frequencies.  相似文献   

10.
This paper proposes and implements a novel rotor position sensorless technique for PM AC motor drives, which allows acceleration from standstill and can operate under various practical operating conditions including transient speed changes. The technique developed here relies on the measurement of the phase voltages and currents of the motor. It uses the incremental values of flux linkage, and the back-EMF functions to estimate incremental rotor position. Using a phase-locked loop (PLL) algorithm, an internal closed-loop correction algorithm can correct rotor position estimation drift, which may be due to the motor parameter variations or measurement inaccuracies. The method is implemented in closed-loop using a digital signal processor (DSP), and details of the implementation are provided in the paper. To demonstrate accuracy, robustness and reliability of the position estimation scheme, the paper presents a number of real-time experimental results, including dynamic operating conditions.  相似文献   

11.
The elimination of the position sensor has been one important requirement in vector control systems because the position sensor spoils the reliability and simplicity of drive systems. Therefore, we present a sensorless vector control technique for synchronous reluctance motors. The rotor position is calculated easily from ds-qs-axes flux linkages which are estimated with a first-order lag compensator. Furthermore, utilizing estimated rotor position as the input of the full-order observer, the rotor speed and disturbance torque are estimated. The proposed sensorless vector control scheme is demonstrated with experimental results  相似文献   

12.
In this paper we present an output feedback nonlinear control for position tracking of electro-hydraulic systems (EHSs). Although previous nonlinear control methods improved the position tracking performance of EHS, all of the methods require full state feedback. However, due to cost and space limitations, it is not always possible to measure the full state of the EHS. The proposed method consists of a high gain observer and a passivity-based controller. The high gain observer is designed to estimate the full state, and the passivity-based control is implemented for position tracking. In order to design the passivity-based controller with the high gain observer, a defined Lyapunov condition guarantee that the origin of the tacking error dynamics is exponentially stable by selecting the controller gain. The stability of the closed-loop is studied using the singular perturbation theorem. The performance of the proposed method is validated through simulations and experiments.  相似文献   

13.
This paper proposes a new sensorless vector control method that can be applied to both of salient-pole and nonsalient-pole permanent-magnet synchronous motors (PMSMs). The proposed method estimates the phase of a rotor flux by a newly developed state observer in a stationary reference frame for sensorless vector controls of PMSMs. The flux state observer has the following attractive features: 1) it requires no steady-state conditions for the dynamic mathematical model of the motor; 2) its order is the minimum second; 3) a single observer gain is simply constant over a wide operating range and can be easily designed; 4) it utilizes motor parameters in a very simple manner; and 5) its structure is very simple and can be realized at a very low computational load. The proposed speed-estimation method, which exploits the inherent physical relation of integration/derivation between phase and speed, is very simple and can properly estimate rotor speed. The usefulness of the proposed method is examined and confirmed through extensive experiments.  相似文献   

14.
A new closed loop current model flux observer is designed to estimate the rotor flux, position and velocity of an induction machine. The current observer includes carefully designed sliding mode functions which are derivative of the fluxes along the /spl alpha/ and /spl beta/ axes. Therefore, when the estimated current converges to the measured one, the flux estimation is a mere integration of the sliding mode function. The rotor speed can then be derived from the sliding mode functions and the estimated flux. In the current and flux observers all of the terms that contain the rotor time constant and the rotor speed have been replaced by the sliding mode functions, thus making the proposed current and flux estimations completely insensitive to the rotor time constant variation and any error in the estimated speed. Simulations and experiments are performed under a variety of conditions to validate the effectiveness of the proposed algorithm.  相似文献   

15.
To control PM brushless DC motors, position and speed sensors are indispensable because the current should be controlled depending on the rotor position. However, these sensors are undesirable from standpoints of size, cost, maintenance, and reliability. There are different ways of approaching this problem, depending on the flux distribution. The paper presents the speed and position sensorless control of PM brushless DC motors with a sinusoidal flux distribution. Two approaches are presented and compared with each other; one is based on the voltage model of the motor and another is based on the current model. The starting procedure is also a very difficult problem under sensorless drives, because the sensorless drive algorithm uses voltage and current for estimation of rotor position, but no information is available before starting. A novel starting method is presented by using a salient-pole machine. Experimental results based on DSP-TMS320C25 controller are shown for comparisons, which demonstrate desired characteristics both in steady-state and starting conditions  相似文献   

16.
This paper presents a new approach of optimizing the efficiency of induction-motor drives through minimizing the copper and core losses. The induction-machine model, which accounts for the varying core-loss resistance and saturation dependent magnetizing inductance, uses natural and reference frame independent quantities as state variables. Utilization of the nonlinear geometric control methodology of input-output linearization with decoupling permits the implementation of the control in the stationary reference frame. This approach eliminates the need of synchronous reference transformation and flux alignment required in classical vector control schemes. The new efficiency optimizing formulation yields a reference rotor flux, which ensures a minimum loss and yields an improved efficiency of the drive system especially when driving part load. The proposed scheme and its advantages are demonstrated both by computer simulations and some experimental results for motor speed control  相似文献   

17.
For a high-power induction motor drive, the switching frequency of the inverter cannot become higher than one kilohertz, and such a switching frequency produces a large current ripple, which then produces torque ripple. To minimize the current ripple, a method based on deadbeat control theory for current regulation is proposed. The pulsewidth modulation (PWM) pattern is determined at every sampling instant based on stator current measurements, motor speed, current references, and rotor flux vector, which is predicted by a state observer with variable poles selection, so that the stator currents are controlled to be exactly equal to the reference currents at every sampling instant. The proposed method consists of two parts: (1) derivation of a deadbeat control and (2) construction of a state observer that predicts the rotor flux and the stator currents in the next sampling instant. This paper describes a theoretical analysis, computer simulations and experimental results  相似文献   

18.
In this paper, a direct flux and torque control scheme for industrial application is analyzed in order to emphasis the drive performance at standstill and in the low speed range. The control strategy utilizes the torque and rotor flux commands to determine the reference value of the stator flux. In order to improve the low speed performance a closed loop estimator is employed to evaluate the rotor flux. The validity of the control scheme is verified by simulations and experimental tests of an induction motor drive system  相似文献   

19.
In the face of magnetic bearing rotor system multivariable, nonlinear, strong coupling control problems, a novel control decoupling method based on inverse system state feedback decoupling theory for the five degree of freedom of active magnetic bearing is presented. It solved the problem of ignoring the limitation of control parameters in conventional control methods. In this paper, the rigid body dynamics model of magnetic suspension rotor is established and the linearization is carried out. In this study, a decoupling pseudo-linear system is constituted by cascading the α-order inverse system based on the state-feedback with the original system. Moreover, in order to improve the robustness of the whole system and reject the influence of the un-modeled dynamics, the internal model controller is designed to synthesize the whole system. Both simulations and experiments demonstrate the effectiveness in decoupling of magnetically-levitated rotor system, and the disturbance rejection of proposed control scheme can be enhanced compared with un-decoupled control schemes.  相似文献   

20.
This paper proposes the use of iterative learning control (ILC) in designing a torque controller for switched reluctance motors (SRMs). The demanded motor torque is first distributed among the phases using a torque-sharing function. Following that, the phase torque references are converted to phase current references by a torque-to-current converter and the inner current control loop tracks the phase current references. SRM torque is a highly nonlinear and coupled function of rotor position and phase current. Hence, the phase current references for a given demanded torque can not be obtained analytically. Assumption of linear magnetization characteristics results in an invertible torque function. However, the nominal phase current references obtained using this torque function will lead to some torque error as motor enters into magnetic saturation. For a constant demanded torque, the error in the phase current references will be periodic with rotor position. Hence, we propose to use ILC to add a compensation current to the nominal phase current references so that torque error is eliminated. Similarly, current tracking for the nonlinear and time-varying system is achieved by combining a simple P-type feedback controller with an ILC controller. The proposed scheme uses ILC to augment conventional feedback techniques and hence, has better dynamic performance than a scheme using only ILC. Experimental results of the proposed scheme for an 8/6 pole, 1-hp SRM show very good average as well as instantaneous torque control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号