首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of Cu–In–Ga–Se alloy system with various composition were prepared by thermal crystallization from In/CuInGaSe/In precursor. Electron probe microanalysis and X-ray diffraction study revealed that these samples were assigned to chalcopyrite Cu(In,Ga)Se2 or ordered vacancy compound Cu(In,Ga)2Se3.5. Solar cell with ZnO:Al/i–ZnO/CdS/Cu(In,Ga)Se2/Mo/soda-lime glass substrate structure was fabricated by using thermal crystallization technique, and demonstrated a 9.58% efficiency without AR-coating.  相似文献   

2.
CuIn1−xGaxSe2 polycrystalline thin films were prepared by a two-step method. The metal precursors were deposited either sequentially or simultaneously using Cu–Ga (23 at%) alloy and In targets by DC magnetron sputtering. The Cu–In–Ga alloy precursor was deposited on glass or on Mo/glass substrates at either room temperature or 150°C. These metallic precursors were then selenized with Se pellets in a vacuum furnace. The CuIn1−xGaxSe2 films had a smooth surface morphology and a single chalcopyrite phase.  相似文献   

3.
The effects of sodium on off-stoichiometric Cu(In,Ga)Se2 (CIGS)-based thin films and solar cells were investigated. The CIGS-based films were deposited with intentionally incorporated Na2Se on Mo-coated SiOx/soda-lime glass substrates by a multi-step process. By sodium control technique high-efficiency ZnO : Al/CdS/CIGS solar cells with efficiencies of 10–13.5% range were obtained over an extremely wide Cu/(In + Ga) ratio range of 0.51–0.96, which has great merit for the large-area manufacturing process. The improved efficiency in the off-stoichiometric regions is mainly attributed to the increased acceptor concentration and the formation of the Cu(In,Ga)3Se5 phase films with p-type conductvity. A new type of solar cell with p-type Cu(In,Ga)3Se5 phase absorber materials is also suggested.  相似文献   

4.
Nanocrystalline Bi2Se3–Sb2Se3 multilayer thin films were deposited by simple and less investigated successive ionic layer adsorption and reaction (SILAR) method onto glass- and fluorine-doped tin oxide (FTO)-coated glass substrate from aqueous solution. Characterizations such as XRD, surface morphology and optical absorption have been carried out for Bi2Se3–Sb2Se3 thin films onto glass substrates. The films deposited onto FTO-coated glass substrates were used to study photoelectrochemical behaviour in 0.1 M (NaOH–Na2S–S) electrolyte and results are reported.  相似文献   

5.
Thin films of Cu(In,Ga)Se2 were prepared by thermal crystallization on the sputtered Mo/substrate and characterized. MoSe2 layer was formed at the interface between Cu(In,Ga)Se2 and Mo layers after the thermal crystallization. The graded Ga concentration in crystallized Cu(In,Ga)Se2 thin films was confirmed. Cu(In,Ga)Se2 thin films prepared on the Mo/soda-lime glass had large and columnar grains rather than those on the Mo/quartz substrate.  相似文献   

6.
CuIn1−xGaxSe2 (CIGS) thin films were formed from an electrodeposited CuInSe2 (CIS) precursor by thermal processing in vacuum in which the film stoichiometry was adjusted by adding In, Ga and Se. The structure, composition, morphology and opto-electronic properties of the as-deposited and selenized CIS precursors were characterized by various techniques. A 9.8% CIGS based thin film solar cell was developed using the electrodeposited and processed film. The cell structure consisted of Mo/CIGS/CdS/ZnO/MgF2. The cell parameters such as Jsc, Voc, FF and η were determined from I–V characterization of the cell.  相似文献   

7.
Improved preparation process of a device quality Cu(In,Ga)Se2 (CIGS) thin film was proposed for production of CIGS solar cells. In–Ga–Se layer were deposited on Mo-coated soda-lime glass, and then the layer was exposed to Cu and Se fluxes to form Cu–Se/In–Ga–Se precursor film at substrate temperature of over 200°C. The precursor film was annealed in Se flux at substrate temperature of over 500°C to obtain high-quality CIGS film. The solar cell with a MgF2/ITO/ZnO/CdS/CIGS/Mo/glass structure showed an efficiency of 17.5% (Voc=0.634 V, Jsc=36.4 mA/cm2, FF=0.756).  相似文献   

8.
Surface sulfurization was developed as a technique for fabricating efficient ZnO : Al/CdS/graded Cu(In,Ga)(S,Se)2/ Mo/glass solar cells. Prior to the sulfurization, single-graded Cu(In,Ga)Se2 (CIGS) films were deposited by a multi-stage process. The sulfurization of CIGS films was carried out using a H2S---Ar mixture at elevated temperatures. The crystallographic and compositional properties of the absorber layers were investigated by XRD, SEM and AES analyses. After sulfurization, sulfur atoms were substituted for selenium atoms at the surface layer of CIGS films to form a Cu(In,Ga)(S,Se)2 absorber layer. The diffusion of sulfur depends strongly on the grain structure of CIGS film. The cell efficiency of the 8–11% range before sulfurization was improved dramatically to 14.3% with Voc = 528 mV, Jsc = 39.9 mA/cm2 and FF = 0.68 after the sulfurization process.  相似文献   

9.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

10.
High-performance Cu(InGa)Se2 (CIGS) thin-film absorbers with an intentionally graded band-gap structure have been fabricated by a simple two-stage method using In/Cu–Ga/Mo stacked precursors and H2Se gas. Additional sulfurization step to form a thin Cu(InGa)(SeS)2 (CIGSS) surface layer on the absorber is necesarry to improve the device performance. In order to understand the role of S incorporated into CIGS absorber, approaches with S are discussed. One approach is carried out by changing the condition of our absorber formation process. It is verified to be possible to incorporate more S into the CIGS absorber, but difficult to improve the device performance with higher S contained CIGS absorbers because of decrease in FF. The incorporated S is concluded to be effective to improve the pn heterojunction quality due to the passivation of surface and grain boundary of CIGS absorber through the formation of a thin CIGSS surface layer.  相似文献   

11.
We investigated the electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure. CIGS/Mo heterocontact including the MoSe2 layer is not Schottky-type but a favorable ohmic-type contact by the evaluation of dark IV measurement at low temperature. A characteristic peak at 870 nm is observed in differential quantum efficiency of a solar cell with a CIGS thickness of 0.5 μm. This peak is considered with relating to the absorption of the MoSe2 layer. The band gap of MoSe2 is calculated to be 1.41 eV from the absorption peak. The band diagram is discussed on the basis of the electrical point of view.  相似文献   

12.
Thin film CuInS2:Ga solar cell absorber films were prepared by sequential evaporation of Cu–In–Ga precursors and sulfurization in sulfur vapor. The depth distribution of Ga was found to be highly inhomogeneous caused by CuGaS2 phase segregation at the back contact. Depending on overall Ga content and sulfurization temperature a quaternary CuGaxIn1−xS2 compound formed exhibiting a shift in absorber lattice constant and band gap. Micro Raman measurements showed that crystal quality was also affected by Ga. Open-circuit voltages well above 800 mV were achieved while sustaining high fill factors of 71%.  相似文献   

13.
Solid solutions in CuGaSe2–ZnSe and CuInSe2–ZnSe systems have been obtained by radio frequency heating. In order to prepare n-type phases based on CuGaSe2, p-type (CuGa)1−xZn2xSe4 and (CuIn)1−xZn2xSe4 (0.05x0.1) single crystals were doped by Ag, Hg, Cd, Zn implantation. The crystal structure of the solid solutions was studied by X-ray diffraction; the substitutors as well as the implantant valence states were analyzed using X-ray photoelectron spectroscopy. Hall effect, electrical conductivity, and the charge carrier mobility of an n-type zinc-implantated solid solution (CuGa)1−xZn2xSe4 and (CuIn)1−xZn2xSe4 (0.05x0.1) were studied.  相似文献   

14.
Zinc indium selenide (ZnIn2Se4) thin films have been prepared by spraying a mixture of an equimolar aqueous solution of zinc sulphate (ZnSO4), indium trichloride (InCl3), and selenourea (CH4N2Se), onto preheated fluorine-doped tin oxide (FTO)-coated glass substrates at optimized conditions of substrate temperature and a solution concentration. The photoelectrochemical (PEC) cell configuration of n-ZnIn2Se4/1 M (NaOH+Na2S+S)/C has been used for studying the current voltage (IV), spectral response, and capacitance voltage (CV) characteristics of the films. The PEC study shows that the ZnIn2Se4 thin films exhibited n-type conductivity. The junction quality factor in dark (nd) and light (nl), series and shunt resistance (Rs and Rsh), fill factor (FF) and efficiency (η) for the cell have been estimated. The measured (FF) and η of the cell are, respectively, found to be 0.435% and 1.47%.  相似文献   

15.
The efficiencies of Cu(In,Ga)Se2/CdS/ZnO solar cell devices in which the absorbers are produced by classical two-step processes are significantly lower that those in which co-evaporated absorbers are used. A significant problem related to two-step growth processes is the reported segregation of Ga towards the Mo back contact, resulting in separate CuInSe2 and CuGaSe2 phases. Furthermore, it is often reported that material losses (especially In and Ga) occur during high-temperature selenization of metallic precursors. In this study, X-ray fluorescence (XRF) analysis was used to study the diffusion behaviour of the chalcopyrite elements in single-stage and two-stage processed Cu(In,Ga)Se2 thin films. This relatively simple characterization technique proved to be very reliable in determining the degree of selenium incorporation, possible material losses and the in-depth compositional uniformity of samples at different stages of processing. This information is especially important in the case of two-stage growth processes, involving high-temperature selenization steps of metallic precursors. Device quality Cu(In,Ga)Se2 thin films were prepared by a relatively simple and reproducible two-step growth process in which all the metals were evaporated from one single crucible in a selenium-containing environment. The precursors were finally treated in an H2Se/Ar atmosphere to produce fully reacted films. XRF measurement indicated no loss of In or Ga during this final selenization step, but a significant degree of element diffusion which depended on the reaction temperature. It was also possible to produce Cu(In,Ga)Se2 thin films with an appreciable amount of Ga in the near-surface region without separated CuInSe2 and CuGaSe2 phases.  相似文献   

16.
Polycrystalline CuIn1 − xGaxSe2 (0 ≤ x < 0.3) films (CIGS) were deposited by coevaporating the elements from appropriate sources onto glass substrates (substrate temperature 720 to 820 K). Photoconductivity of the polycrystalline CIGS films with partially depleted grains were studied in the temperature range 130–285 K at various illumination levels (0–100 mW/cm2). The data at low temperature (T < 170 K) were analyzed by the grain boundary trapping model with monovalent trapping states. The grain boundary barrier height in the dark and under illumination were obtained for different x-values of CuIn1−xGaxSe2 films. Addition of Ga in the polycrystalline films resulted in a significant decrease in the barrier height. Variation of the barrier height with incident intensity indicated a complex recombination mechanism to be effective in the CIGS films.  相似文献   

17.
Cu(In,Ga)(S,Se)2 thin films with high Ga/III ratio (around 0.8) were prepared by sequential evaporation from CuGaSe2, CuInSe2, In2Se3 and Ga2Se3 compounds and then annealing in H2S gas atmosphere. The annealing temperature was varied from 400 to 500 °C. These samples were characterized by means of XRF, EPMA, XRD and SEM. The S/(S+Se) mole ratio in the thin films increased with increase in the annealing temperature, keeping the Cu, In and Ga contents nearly constant. The open circuit voltage increased and the short circuit current density decreased with increase in the annealing temperature. The best solar cell using Cu(In,Ga)(S,Se)2 thin film with Ga/(In+Ga)=0.79 and S/(S+Se)=0.11 annealed at 400 °C demonstrated Voc=535 mV, Isc=13.3 mA/cm2, FF=0.61 and efficiency=4.34% without AR-coating.  相似文献   

18.
Pulsed non-melt laser annealing (NLA) has been used for the first time to modify near-surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells. CIGS films deposited on Mo/glass substrates were annealed using a 25 ns pulsed 248 nm laser beam at selected laser energy density in the range 20–60 mJ/cm2 and pulse number in the range 5–20 pulses. XRD peak narrowing and SEM surface feature size increase suggest near-surface structure changes. Dual-beam optical modulation (DBOM) and Hall-effect measurements indicate NLA treatment increases the effective carrier lifetime and mobility along with the sheet resistance. In addition, several annealed CdS/CIGS films processed by NLA were fabricated into solar cells and characterized by photo- and dark-JV and quantum efficiency (QE) measurements. The results show significant improvement in the overall cell performance when compared to unannealed cells. The results suggest that an optimal NLA energy density and pulse number for a 25 ns pulse width are approximately 30 mJ/cm2 and 5 pulses, respectively. The NLA results reveal that overall cell efficiency of a cell processed from an unannealed film increased from 7.69% to 13.41% and 12.22% after annealing 2 different samples at the best condition prior to device processing.  相似文献   

19.
We have developed the flexible Cu(In,Ga)Se2 (CIGS) solar cells on the stainless steel substrates with the insulating layer for the fabrication of the integrated module. The CIGS films have strong adhesion to the Mo films with insulating layers. An efficiency of 12.3% was achieved by the flexible CIGS solar cell with a structure of ITO/ZnO/CdS/CIGS/Mo/SiO2/stainless steel. The insertion of the SiO2 insulating layer did not have an influence on the formation of the CIGS film and solar cell performances.  相似文献   

20.
CuGaSe2 thin films with thicknesses of about 2 μm were prepared by flash and single source evaporation onto mica and (1 1 0)-oriented ZnSe substrates in the substrate temperature range 150–450°C. The obtained polycrystalline CuGaSe2 films had the chalcopyrite structure with the predominant growth direction 2 2 1. Hall effect, conductivity and luminescence measurements have been carried out on CuGaSe2 thin films and source materials: CuGaSe2 single crystals grown by Bridgman technique and by chemical vapour transport using I2 as transport agent. All films and crystals are p-type. Two acceptor levels with ionization energies EA150–56 meV and EA2130–150 meV have been identified as due to Ga vacancy and presence of Se atoms on interstitial sites respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号