首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improvement of the thermal performance of a solar air heater can be obtained by enhancing the rate of heat transfer. The thermal efficiency of double pass solar air heater is higher in comparison to single pass with the concept involved of doubling the heat transfer area without increase in the system cost. Numbers of studies have been carried out on the performance analysis of double pass solar air heater provided with heat transfer augmentation techniques viz. using extended surfaces, packed bed, corrugated absorber were reported in the literature and found more increase in the thermal efficiency in comparison to conventional double duct solar air heater. These studies includes the design of double pass solar air heater, heat transfer enhancement, flow phenomenon and pressure drop in duct. This paper presents an extensive study of the research carried out on double pass solar air heater. Based on the literature review, it is concluded that most of the studies carried out on double pass solar air heater integrated with porous media and extended surfaces. Few studies were carried out with corrugated absorber. Further no study has been reported so far on double pass solar air heater with absorber plate artificially roughened from both the sides. Mathematical models based on energy analysis of some configurations of solar air heater have been discussed.  相似文献   

2.
This article investigates the impacts of flow configurations on the thermal performance of a solar heater system. Recycled aluminum cans (RACs) have been utilized as turbulators with a double pass single duct solar air collector. The CFD software of COMSOL Multiphysics V5.3a is used to model three designs: Cocurrent (model A), countercurrent (model B), and U-shape (model C). The numerical results reveal that the U-shape design offers a greater thermal performance of 5.4% and 6.5%, respectively, compared with the cocurrent and countercurrent flow models. Furthermore, an outdoor experiment is performed based on the numerical modeling of flow configurations. The experimental setup is examined for three configurations of model C, namely, solar air heater (SAH) without RAC model C-I (plain model), SAH with in-line RAC layout (model C-II), and SAH with staggered RAC layout (model C-III). We found the double pass single duct solar air collector (model C) design is in a good agreement with the experimental data, and model C-III has a better thermal efficiency of 60.2%, compared to those of model C-II, 53.1%, and model C-I, 49.4%.  相似文献   

3.
In this paper an attempt has been made to analyze the performance of semi transparent hybrid PVT double pass air collector. Based on the first law of thermodynamics, energy balance equations are for-mulated to derive the analytical expression for air temperature at the outlet, as a function of the design and climatic parameters for investigating the performance of semi transparent hybrid PVT air collector. The analysis is based on quasi-steady state condition. This paper shows the detailed analysis of energy and exergy of a semi transparent hybrid PVT double pass air collector and its comparison with single pass air collector for four weather conditions (a, b, c and d type) for five different cities (New Delhi, Bangalore, Mumbai, Srinagar, and Jodhpur) of India. It has been analyzed that if such systems are installed only at 10% of the total residential houses in Delhi, then the total carbon credits earned by the system is found to be Rs. 1767 millions in terms of thermal energy and Rs. 493 millions in terms of exergy for double pass air collector whereas Rs. 1528 millions in terms of thermal energy and Rs. 446 millions in terms of exergy for single pass air collector. The results clearly shows that hybrid PVT double pass air collector have better performance as compared to single pass air collector.  相似文献   

4.
In the present work a comparative study for thermal and electrical performance of different hybrid photovoltaic/thermal collectors designs for Iraq climate conditions have been carried out. Four different types of air based hybrid PV/T collectors have been manufactured and tested. Three collectors consist of four main parts namely, channel duct, glass cover, axial fan to circulate air and two PV panels in parallel connection. The measured parameters are, the temperature of the upper and the lower surfaces of the PV panels, air temperature along the collector, air flow rate, pressure drop, power produced by solar cell, and climate conditions such as wind speed, solar radiation and ambient temperature. The thermal and hydraulic performances of PV/T collector model IV have been analyzed theoretically based on energy balance. A Matlab computer program has been developed to solve the proposed mathematical model.The obtained results show that the combined efficiency of collector model III (double duct, single pass) is higher than that of model II (single duct double pass) and model IV (single duct single pass). Model IV has the better electrical efficiency. The pressure drop of model III is lower than that of models II and IV. The root mean square of percentage deviations for PV outlet temperature, and thermal efficiency of model IV are found to be 3.22%, and 18.04% respectively. The calculated linear coefficients of correlation (r) are 0.977, 0.965 respectively.  相似文献   

5.
This paper presents the thermal performance of a double-pass solar collector with and without porous media in the second or lower channel of the collector. The experimental setup has been designed to study the thermal performance over a range of design and operating conditions. Several important relationships between the design and operating conditions have been obtained. These relationships effect the thermal performance of the double-pass solar collector. The relationships include the effect of changes in upper and lower channel depth on the thermal efficiency with and without porous media. Moreover, the effects of mass flow rate, solar radiation, and temperature rises on the thermal efficiency of the double-pass solar collector have been studied. The study concluded that the presence of porous media in the second channel increases the outlet temperature, therefore increases the thermal efficiency of the systems.  相似文献   

6.
《Applied Thermal Engineering》2005,25(5-6):741-757
In this paper, two kinds of roof solar collectors (RSCs), namely, the single pass RSC, and the double pass RSC are analyzed and compared. The double pass roof solar collector, which is configured by integrating a double pass solar air collector with the building roof, can be operated more efficiently for space heating in winter, and for natural ventilation in other seasons. To evaluate the effects of two RSCs for both space heating and natural ventilation, a single traditional Chinese style house, on which the two RSCs will be mounted respectively, is developed. Through comparison, it is found that the instantaneous efficiency of solar heat collecting for the double pass RSC is higher than that of the single pass one by 10% on average, and natural ventilation air mass flow rate contributed by natural ventilation for the double pass RSC can be improved to a great extent for most cases, indicating that double pass RSC is superior to the single pass one from the points of view of both space heating and natural ventilation. The double pass RSC is therefore more potential for improving indoor thermal environment and energy saving of buildings.  相似文献   

7.
《Energy》1999,24(10):857-871
The performance of double-flow type solar air heaters, in which air is flowing simultaneously over and under the absorbing plate, is more effective than that of the devices with only one flow channel over or under the absorbing plate because the heat-transfer area in double-flow systems is double. The effect of the fraction of mass flow rate in the upper or lower flow channel of a double-flow device on collector efficiencies, has also been investigated theoretically and experimentally. Considerable improvement in collector performance is obtained by employing a double-flow type solar air heater, instead of using a single-flow device, if the mass flow rates in both flow channels are kept the same.  相似文献   

8.
In this present paper, analysis based on energy and exergy of double‐pass hybrid photovoltaic thermal (HPV/T) air collector having air flow in the opposite direction in ducts has been carried out based on initial cost, annual savings and return on investment. Choice of the location is made to cover different climatic conditions prevailing in India e.g. hot and dry climate represented by Jodhpur, warm and humid climate represented by Mumbai, moderate climate represented by Bangalore, cold and cloudy climate represented by Srinagar and composite climate represented by New Delhi. Results of single‐pass HPV/T air collector have also been compared. It is observed that electrical, thermal and exergy efficiencies of double‐pass HPV/T air collector are higher than that of single‐pass HPV/T air collector by 10–12, 40–45 and 13–17%, respectively. Further, it is observed that cost per kWh of double‐pass HPV/T air collector reduces for all the locations covered in the study when compared with cost per kWh of single‐pass HPV/T air collector. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The thermal performances of single and double pass solar air heaters with steel wire mesh layers are used instead of a flat absorber plate are investigated experimentally. The effects of mass flow rate of air on the outlet temperature and thermal efficiency were studied. The results indicate that the efficiency increases with increasing the mass flow rate for the range of the flow rate used in this work between 0.012 and 0.038 kg/s. For the same flow rate, the efficiency of the double pass is found to be higher than the single pass by 34–45%. Moreover, the maximum efficiencies obtained for the single and the double pass air collectors are 45.93 and 83.65% respectively for the mass flow rate of 0.038 kg/s. Comparison of the results of a packed bed collector with those of a conventional collector shows a substantial enhancement in the thermal efficiency.  相似文献   

10.
在直通式太阳能玻璃真空管空气集热器基础上改进联箱结构,并搭建测试平台对该种改进型空气集热器进行热性能实验研究。通过实验比较改进前后集热器的温升和效率,获得改进后集热器出口温度与太阳辐照度关系的线性回归方程,掌握不同空气质量流量对集热器出口温度和集热效率的影响规律,分析得到该种真空管的最佳串联个数,并对应用该种集热器的太阳能干燥系统的干燥效果进行初步测试分析。该研究结果可为太阳能空气集热干燥系统的设计及应用提供参考。  相似文献   

11.
H. D. Ammari   《Renewable Energy》2003,28(10):1597
A mathematical model for computing the thermal performance of a single pass flat-plate solar air collector is presented. Air channels were formed by providing metal slats running along the circulated air passage linking the absorber plate by the bottom one in an endeavor to enhance the thermal efficiency of the solar air collector. A mathematical model, therefore, is developed by which the influence of the addition of the metal slats on the efficiency of the solar collector is studied. A computer code that employs an iterative solution procedure is constructed to solve for the governing energy equations to estimate the mean temperatures of the collector. The effect of volume airflow rate, collector length, and spacing between the absorber and bottom plates on the thermal performance of the present solar air heater was investigated. Furthermore, a numerical comparison of the present design with the most common type of solar air heaters is conducted. The results of the comparison have indicated that better thermal performance was obtained by the modified system.  相似文献   

12.
Based on the previous research of the plate-type solar collector by the author, the analysis of the relationship between the spectral radiative property of the absorbing and transparent plates and their collector efficiency is firstly discussed on a simplified solar collector model. This analytical technique is then applied to evaluate the performance of water solar collector in practical use and the performance of five sorts of the commercial solar collectors are compared each other on both the collection efficiency and equilibrium temperature. Consequently, it is made clear that those solar collectors in Japan are of excellent quality of high collection efficiency.

Secondly, the performance of a unit-type air solar collector with carbon fiber sheet (CF-sheet) as the absorbing material, which was developed by the author in cooperation with a company, is analyzed and examined in the same way as above. Lastly, a large scale house-type air solar collector is tested, and this type of solar collector using carbon fiber' might be one of the most feasible methods to use solar energy in the industrial field including cost-performance.  相似文献   

13.
The double-pass solar collector with porous media in the lower channel provides a higher outlet temperature compared to the conventional single-pass collector. Therefore, the thermal efficiency of the solar collector is higher. A theoretical model has been developed for the double-pass solar collector. An experimental setup has been designed and constructed. The porous media has been arranged in different porosities to increase heat transfer, area density and the total heat transfer rate. Comparisons of the theoretical and the experimental results have been conducted. Such comparisons include the outlet temperatures and thermal efficiencies of the solar collector for various design and operating conditions. The relationships include the effect of changes in upper and lower channel depth on the thermal efficiency with and without porous media. Moreover, the effects of mass flow rate, solar radiation, and temperature rises on the thermal efficiency of the double-pass solar collector have been studied. In addition, heat transfer and pressure drop relationships have been developed for airflow through the porous media. Close agreement has been obtained between the theoretical and experimental results. The study concluded that the presence of porous media in the second channel increases the outlet temperature, therefore increases the thermal efficiency of the systems.  相似文献   

14.
This paper presents an improved design of a photovoltaic/thermal (PV/T) solar collector integrating a PV panel with a serpentine-shaped copper tube as the water heating component and a single pass air channel as the air heating component. In addition to the electricity generated, this type of collector enables the production of both hot air and water, increasing the total efficiency per unit area compared to the conventional PV/T solar collector. The use of both fluids (bi-fluid) also creates a greater range of thermal applications and offers options in which hot and/or cold air and/or water can be utilized depending on the energy needs and applications. In this paper, the design concept of the bi-fluid PV/T solar collector is emphasized with 2D steady state energy balance equations for the bi-fluid configuration are developed, validated and used to predict the performance of the bi-fluid solar collector for a range of mass flow rates of air and water. The performance of the collector is then compared when the fluids are operated independently and simultaneously. The simulations indicate that when both fluids are operated independently the overall thermal and electrical performance of the solar collector is considered as satisfactory and when operated simultaneously the overall performance is higher. The bi-fluid PV/T solar collector discussed in this paper will add insights to the new knowledge of optimizing the utilization of solar energy by a PV/T solar collector and has potential applications in various fields.  相似文献   

15.
利用太阳能空气加热系统实验台,对黑、深绿和深蓝3种颜色无盖板渗透型集热器的热性能进行了户外瞬态对比试验。试验结果表明:太阳辐射照度和风量是影响系统热性能的重要因素。在高档和低档两种风量下,黑色集热器的瞬时平均热效率分别为76.04%和67.50%,高于普通平板太阳能空气集热器;集热器表面颜色对其热性能有一定影响,在高档和低档两种风量下,深绿色和深蓝色集热器的瞬时平均热效率比黑色集热器低15%~22%,空气温升低3~4℃,但仍然优于普通平板空气集热器。从保持建筑立面美观考虑,无盖板渗透型集热器的集热板可以采用颜色较深的彩色,不会对系统热性能造成较大影响。  相似文献   

16.
The thermal performance of solar air heaters consisting of a porous textile absorber between two PVC foils has been investigated. The efficiency of the heaters depends strongly on the characteristics of the textile forming the absorber and on the back insulation. For an incident solar radiation of 687 W/m2 at the collector's surface, a temperature rise of 16-6°C in the air flowing through the solar collector at a rate of 800 m3/h, was achieved, thus yielding an efficiency of nearly 71 percent. Further it was found that the linear approximation for the Hottel-Bliss equation leads to erroneous estimations for the collector's parameters when the absorber is porous; for the same type of collector with a denser textile as absorber, however, such an approximation yields, as usual, correct numerical values for the characteristic parameters of the collector.  相似文献   

17.
Turhan Koyuncu   《Renewable Energy》2006,31(7):1073-1088
Different heat sources are employed for the drying of agricultural products. However, in many rural locations in most developing countries, supplies of non-renewable sources of energy are either unavailable, unreliable or, for many farmers, too expensive. In renewable energy sources, solar energy is the most appropriate for drying systems. This energy allows independent systems to be constructed and possesses a thermal conversion mode which necessitates a simple technology which is adapted to the rural regions for crop drying applications. These systems are all based on the air heating flat plate solar collectors.Therefore, six different types of natural circulation air heating solar collectors (Model-1: single plastic glazing, black painted hardboard absorber and front-pass; Model-2: single plastic glazing, black painted flat plate absorber and front-pass; Model-3: single plastic glazing, black painted zigzag plate absorber and front-pass; Model-4: single plastic glazing, black painted flate plate absorber and back-pass; Model-5: single plastic glazing, black painted zigzag plate absorber and back-pass; Model-6: double plastic glazing, black painted flat plate absorber and back-pass) were designed, constructed and analysed for their performance in this study. Each collector mainly consisted of a frame constructed from hardboard, vent holes, hardboard insulation, absorbing surface made of black coated aluminium sheet and clear plastic glazing.All solar air heaters were mounted on a stand facing south at an inclination angle, and they were tested simultaneously under the same environmental conditions. The experimental setup was instrumented for the measurement of solar radiation, temperature and relative humidity of the atmosphere air, outlet air temperature, surface temperature of the back and edge insulator and absorber plate, air speed and wind velocity.It is understood from the results of the investigation that the performances of Model-1, Model-2, Model-3, Model-4, Model-5 and Model-6 are 42.11, 45.88, 44.23, 39.76, 39.05 and 36.94% respectively, and the performance of the most efficient collector (Model-2) is aproximately 9% more than the least efficient one (Model-6). In addition, it is seen that unlike number of glazing sheet and air pass method, the effect of the shape of the absorbing surface on the performance is considerably less.  相似文献   

18.
In this paper, the double pass flat and v-corrugated plate solar air heaters are investigated theoretically and experimentally. Analytical models for the air heater with flat and v-corrugated plates are presented. Numerical calculations have been performed under Tanta (latitude, 30° 47 N) prevailing weather conditions. The theoretical predictions indicated that the agreement with the measured performance is fairly good. Comparisons between the measured outlet temperatures of flowing air, output power and overall heat losses of the flat and v-corrugated plate solar air heaters are also presented. The effect of mass flow rates of air on pressure drop, thermal and thermo hydraulic efficiencies of the flat and v-corrugated plate solar air heaters are also investigated. The results showed that the double pass v-corrugated plate solar air heater is 11-14% more efficient compared to the double pass flat plate solar air heater. It is also indicated that the peak values of the thermo hydraulic efficiencies of the flat and v-corrugated plate solar air heaters are obtained when the mass flow rate of the flowing air is 0.02 kg/s.  相似文献   

19.
In this study, flat plate, finned and v-corrugated air heaters were investigated both experimentally and theoretically in an effort to improve the performance of conventional air heaters. Collectors were also tested in double pass mode to investigate the extent of improvement in efficiency that could be achieved without increasing the collector size or cost. A series of experiments were conducted, based on the ASHRAE standard, under climatic conditions of Singapore. The performance of all three collectors was examined over a wide range of operating and design conditions. The v-corrugated collector was found to be the most efficient collector and the flat plate collector to be the least efficient. Results showed that the v-corrugated collector is 10–15 and 5–11% more efficient in single pass and double pass modes, respectively, compared to flat plate collectors. The double pass operation of the collector improved the efficiency of all three collectors. The improvement in efficiency for double pass mode was most significant in the flat plate collector and least in the v-groove collectors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号