首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了A2/O2工艺在临钢焦化厂焦化废水改造中的应用,详述了工艺方案及工艺参数的确定。针对A2/O2工艺的难点,在工艺布置、工艺流程的选择、新设备的选用、自动化控制措施等方面进行了一些技术创新。生物脱氮工艺出水指标为:挥发酚0.024mg/L,氰0.123mg/L,COD 136.7mg/L,NH3-N8.026mg/L,油类0.669mg/L;焦化厂总排水指标为:挥发酚0.067mg/L,氰0.015mg/L,COD 84.9mg/L,NH3-N6.592mg/L,油类0.545mg/L,分别达到了相应的国家标准,对原有的焦化废水处理普通活性污泥工艺改造有一定的借鉴意义。  相似文献   

2.
采用厌氧-缺氧-好氧-复合.(A1-A2-O-M)工艺处理焦化废水,考察了外加碳源和碱源对焦化废水COD和NH4+-N脱除效果的影响.试验结果表明外加甲醇和碳酸氢钠对焦化废水的硝化和反硝化效果影响很小;不外加碳源和碱源时,焦化废水经处理后出水的COD和NH4+-N平均质量浓度分别为125.0 mg/L和1.12mg/L,分别达到<污水综合排放标准>(GB8978-1996)中的二级标准和一级标准.  相似文献   

3.
A_1-A_2-O-M工艺处理焦化废水的实验研究   总被引:1,自引:0,他引:1  
采用厌氧-缺氧-好氧-复合(A1-A2-O-M)工艺处理焦化废水,考察了外加碳源和碱源对焦化废水COD和NH4+-N脱除效果的影响。试验结果表明:外加甲醇和碳酸氢钠对焦化废水的硝化和反硝化效果影响很小;不外加碳源和碱源时,焦化废水经处理后出水的COD和NH4+-N平均质量浓度分别为125.0mg/L和1.12mg/L,分别达到《污水综合排放标准》(GB8978-1996)中的二级标准和一级标准。  相似文献   

4.
焦化废水水质复杂,处理难点在于去除水中高浓度的CODCr、NH3-N和氰化物等。首钢某焦化厂废水处理工程采用以O1/A/O2工艺(预曝气/缺氧/好氧)为核心、前置除油预处理、后置混凝沉淀深度处理工艺,取得了较好的处理效果。运行结果表明:O1/A/O2工艺对CODCr和NH3-N的去除率分别可达95%和89%以上;混凝沉淀采用聚合硫酸铁絮凝剂和PAM助凝剂,加药量分别为600~800 mg/L和1~2 mg/L时,CODCr去除率在50%左右,脱色效果好。经过预处理、生化处理及深度处理后,出水主要污染物指标达到了《污水综合排放标准》的二级排放标准要求。  相似文献   

5.
采用A/O-MBR工艺对填埋场垃圾渗滤液进行了短程硝化反硝化脱氮研究。实验结果表明:系统驯化后稳定运行,COD去除率达到80%以上,NH4+-N、TN的平均去除率分别达到99.2%、92.2%;OⅠ与OⅡ池中NO2--N平均积累率分别达到91.7%、95.6%,表明系统主要的脱氮方式为短程硝化反硝化;过高或过低的DO都会影响NO2--N积累,硝化过程中的最佳DO为0.7~0.9 mg/L。PCR技术分析表明,A池中的优势菌种是反硝化细菌,占有率为70%;OⅡ池中的优势菌种是AOB,占有率为67%。  相似文献   

6.
通过"混凝+预处理曝气+预处理沉淀+A2/O生化法+物化"组合工艺对污水处理厂废水进行处理,对COD、TP、TN、NH3-N等测定数据进行分析,评价污水处理厂运行效果.结果表明:COD、TP、TN、NH3-N的平均去除率分别为97%、96%、70%、97%,出水各项指标的平均值分别为:COD浓度为46 mg/L、TP浓度为0.06 mg/L、TN浓度为8 mg/L、NH3-N浓度为0.6 mg/L,出水满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级A标准要求,在进水浓度低于设计值的情况下,出水污染物浓度不易受进水量增加的影响.  相似文献   

7.
不同有机碳源对SBR工艺同步硝化反硝化影响   总被引:3,自引:0,他引:3  
采用序批式生物反应器(SBR)处理模拟废水,在pH值7.0~8.0、温度30~32℃、DO浓度0.5~1mg/L、MLSS(4000±300)mg/L、NH4+-N35~45mg/L条件下,考察乙酸钠、淀粉和葡萄糖作为碳源对SBR工艺同步硝化反硝化效果的影响。结果表明:投加葡萄糖时,COD去除率达到93.95%,出水硝酸盐浓度为7mg/L;投加淀粉时,COD去除率仅70%,出水硝酸盐浓度为12mg/L;采用乙酸钠作为碳源时,COD去除率为88.34%,出水硝酸盐浓度为4mg/L。COD/NH4+-N为12,分次投加乙酸钠时,氨氮去除率高于95%,总氮去除率高于90%,实现了同步硝化反硝化。在同步硝化反硝化SBR系统中,乙酸钠比淀粉和葡萄糖更适合作为碳源。  相似文献   

8.
采用物化与生物结合工艺处理焦化废水,物化系统中主要工艺为除氰及除氮工艺,生物系统采用了厌氧内循环(IC)一共基质条件下好氧内循环结合工艺.好氧内循环工艺以葡萄糖为共基质,池内空间位置上存在好氧及缺氧区,同时将悬浮载体技术引入好氧池,提高了焦化废水中难降解有机物及总氮的去除效果.实现了COD、NH3-N、TN的同时去除.实验结果表明,该工艺运行稳定且处理效果较好.3个月的稳定运行期间,出水COD、NH3-N、TN平均质量浓度分别为62、9、29 mg/L.  相似文献   

9.
采用初曝池-兼气池-好氧池( O1/A/O2)工艺处理化肥、季戊四醇生产综合含氮废水,在进水COD、NH4+-N的质量浓度平均分别为624和59.3 mg·L-1时,出水COD在100 mg·L-1以下,平均为34.5 mg· L-1,去除率达93.2%;出水氨氮的质量浓度在15 mg·L-1以下,平均为0.8 mg·L-1,去除率高达98.7%;达到了GB 8978- 1996的一级标准.分析了系统反硝化能力较差、TN去除效率较低的原因,提出应减小硝化液回流比、适当调低O1池DO含量、充分利用厂区季戊四醇废液作为外加碳源等措施.  相似文献   

10.
以低COD/N人工模拟废水为基质,研究移动床生物膜反应器(MBBR)内同步硝化反硝化(SND)过程。进水COD和NH4+-N的质量浓度分别为200 mg/L和40 mg/L,以K1型填料为载体(填充率为40%),DO控制在3~4mg/L,20 d后有稳定的生物膜形成。生物膜完全成熟后,每个填料上平均生物膜量为33.5 mg,出水COD和NH4+-N去除率平均分别达86.68%和97.25%,NO2--N基本无累积,NO3--N的质量浓度均保持在5 mg/L以下,TN去除率在后期最高达90.6%,计算得到SND率达91.66%,结果证实在单一反应器内实现了良好的同步硝化反硝化过程。动力学模拟得出同步硝化反硝化过程中的NO3--N饱和常数为5.83 mg/L,大于单级反硝化过程中的硝酸盐氮饱和常数。  相似文献   

11.
为探讨A/O/A和BAF+A工艺结合优势微生物对印染废水脱氮处理的效果,试验以广东某纺织有限公司废水站为例,采用优势微生物结合升级的系统对该废水进行脱氮处理的小试研究。实验结果表明,在接种优势微生物后,ρ(NH3-N)从19.5mg/L降至3.17mg/L,ρ(TN)从35.66mg/L降至8.93mg/L,去除率分别达到83.7%和75.0%。硝化作用良好的BAF池出水进入反硝化池,并用水解酸化池出水提供碳源,有效去除总氮,ρ(TN)从10.9mg/L降至6.2mg/L,ρ(TN)去除效率达到43.1%。系统出水ρ(COD)≤60.0mg/L,ρ(氨氮)≤5.0mg/L,ρ(总氮)≤15.0mg/L。  相似文献   

12.
针对郑州某一城市污水处理厂"混合型城市污水"的特征,以厂区曝气沉砂池出水作为处理对象,设计1套A2/O工艺强化脱氮中试装置。该A2/O工艺采用氧化沟作为好氧池,氧化沟对总氮和氨氮的去除具有强化作用,同时可降低硝化液回流的能耗;当进水COD、NH3-N、TN的平均质量浓度分别为513.6、22.4、34.2 mg/L时,经A2/O工艺处理后,对COD、NH3-N、TN的平均去除率分别达到了91.2%、84.4%、71.44%,出水水质达到城镇污水处理厂污染物排放标准(GB 18918-2002)一级A标准,取得了良好的污染物去除和脱氮的效果,总体出水水质相对稳定。  相似文献   

13.
孙治民 《燃料与化工》2012,43(1):53-54,64
介绍了A/O法生物脱氮工艺的特点,分析了焦化废水处理过程中进水水质、废水温度、溶解氧和pH值等对A/O生物脱氮工艺的影响。经生产调试和优化操作,系统运行稳定,各项参数指标控制在工艺要求范围内,出水酚≤0.3mg/L、氰≤0.2mg/L、COD≤50mg/L、氨氮≤8mg/L,达到国家排放标准。  相似文献   

14.
操家顺  陈洵  方芳 《净水技术》2013,(6):40-44,63
以采用厌氧/缺氧/好氧(A/A/O)工艺的城镇污水处理厂为研究对象,利用改良A/A/O中试装置开展处理实际污水的研究,通过与实际工艺的运行效果对比,系统探讨了低溶解氧(DO)浓度以及好氧池末端非曝气区的设置对脱氮除磷的影响。结果表明当好氧区的DO平均浓度从2.2mg/L逐渐降至1.0mg/L时,系统COD的去除效率与硝化效果未受到影响,但除磷效果明显下降;随着DO平均浓度的降低以及非曝气区对DO的缓冲,保证了缺氧区的缺氧环境,同时有效降低了内回流液中DO浓度的携带对碳源的消耗,提高了反硝化效率,使得系统对TN的去除率逐渐升高。就总体运行情况来看,A/A/O工艺中好氧区DO的平均浓度可以在1.0—2.0mg/L之间运行,同时在好氧区末端设置非曝气区,可以有效地缓冲内回流液中DO浓度对反硝化的影响,提高脱氮效率。  相似文献   

15.
A~2/O工艺处理焦化废水   总被引:7,自引:0,他引:7  
阚学成  侯学轩 《煤化工》2006,34(6):48-50
简述了生物脱氮工艺处理焦化废水的基本原理、工艺流程和主要控制要求,介绍了某企业采用该工艺处理焦化废水的调试运行过程和结果,可使废水中氨氮从150mg/L~250mg/L降至15mg/L以下,并且出水中COD基本维持在100mg/L左右,达到了《污水综合排放标准》(GB8978-1996)的二级标准。  相似文献   

16.
异养硝化-好氧反硝化菌异养硝化性能的影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
在异养硝化-好氧反硝化菌H1良好的脱氮效果基础上,研究了在不同溶解氧浓度、废水成分和金属离子存在条件下时,H1的代谢途径及其异养硝化性能的变化。研究表明,溶解氧浓度在4.7 mg/L时,H1脱氮途径最佳;在NH4+模拟废水中,NH4+会通过NH4+—→NH2OH—→N2O—→N2的途径被快速去除;在NH4+和NO2?混合模拟废水中,没有显示出H1优先进行反硝化的现象,NH4+-N的降解是短程的硝化反硝化过程;在NH4+和NO3?混合模拟废水中,NO3?会诱导羟胺氧化酶产生NO2?-N,使得NH4+-N经过反硝化途径的亚硝酸盐水平被去除;在NH4+模拟废水中,1 mmol/L的Cu2+和Fe2+对异养硝化过程具有显著地激活作用。  相似文献   

17.
A/O工艺处理吉化混合化工废水试验研究   总被引:1,自引:0,他引:1  
王俊杰  谢锐 《化工科技》1998,6(4):42-46
提出了一种化工生产中废水处理的新工艺──Anoxic/Oxic(A/O)工艺。实验室研究结果表明,该工艺能通过硝化-反硝化作用使吉化混合化工废水中COD、NH3-N和TN同时得到有效降解,为废水达标排放提供了一条有效途径。  相似文献   

18.
预处理+A2/O+活性炭过滤处理焦化废水的实验研究   总被引:2,自引:0,他引:2  
针对焦化废水的水质特性,提出了"预处理+A2/O+活性炭过滤"组合工艺处理焦化废水。通过连续实验,结果表明:该组合工艺对焦化废水中的COD、NH3-N和TN的去除效果较传统的A2/O工艺更好,COD去除率为83.46%,NH3-N去除率为74.33%,TN去除率为74.69%,SS去除率为74.25%,其中A2/O反应器总水力停留时间为30小时,最佳混合液回流比为3Q,实验结果验证了该组合工艺是可行的。  相似文献   

19.
巩有奎  任丽芳  彭永臻 《化工学报》2019,70(4):1550-1558
在(20±2.0)℃ 条件下,以实际生活污水为处理对象,以碳纤维为填料(填充率35%),利用序批式生物膜(sequencing batch biofilm reactor,SBBR)反应器,通过限氧曝气,成功实现了亚硝酸型同步生物脱氮(simultaneous nitrification and denitrification,SND)过程。荧光原位杂交技术(fluorescence in-situ hybridization,FISH)半定量表明,氨氧化菌(ammonia oxidizing bacteria, AOB)是硝化系统中的优势菌种。微生物将外碳源以聚β–羟基烷酸酯(poly-β-hydroxyalkanoate,PHA)的形式储存在体内,作为后续反硝化过程所需内碳源。DO=0.5 mg/L,SBBR系统NH4 +-N和TN去除率分别为95%以上和80.4%,SND效率达77.9%。出水NO x --N小于10 mg/L,且以NO2 --N为主。DO=2.0、1.2和0.5 mg/L时,系统N2O释放量分别为1.38、2.39和1.65 mg/L。AOB的好氧反硝化过程和低氧条件下以PHA作为内碳源的NO x --N反硝化过程,都会导致N2O释放。低DO水平是实现亚硝酸型同步脱氮过程和降低N2O释放的关键因素。低DO促进了AOB的竞争优势,形成了良好的缺氧微环境,降低了COD降解速率,为反硝化过程提供外碳源作为电子供体,从而降低了N2O释放量。  相似文献   

20.
以焦化厂废水处理系统气浮设备出水为试验废水水源,在中试规模上研究了生物膜法A2/O2(厌氧/缺氧/好氧/好氧)系统中缺氧反应器的工艺特性和效果。缺氧反应器为以陶粒作填料的上流式滤池。研究结果表明,缺氧反硝化对去除焦化废水中COD有重要作用。反硝化菌可利用一些好氧微生物和厌氧微生物都难以降解的焦化废水中的有机物作碳源,反硝化反应器可去除进水中40%的COD。缺氧反硝化反应器进水碳氮质量比在5以上就可基本满足焦化废水反硝化对碳源的需求。稳定运行状况下的NO3--N容积负荷不大于0.24 kg/(m3.d)。缺氧反应器的水力停留时间不小于24 h。系统进水COD、NH3-N的质量浓度分别在1 000~2 200、200~400 mg/L范围内,对系统进水不进行稀释的条件下,水解酸化反应器HRT为20 h,缺氧反应器HRT为24 h,一级好氧反应器和二级好氧反应器HRT均为48 h,二级好氧反应器硝化液回流比为3时,生物膜法A2/O2系统处理出水的COD和NH3-N可以同时达到《污水综合排放标准》(GB8978-1996)中的一级排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号