共查询到20条相似文献,搜索用时 78 毫秒
1.
为有效解决孟津煤矿11010工作面回采过程中,采空区以及上隅角的瓦斯积聚问题,根据工作面的实际情况,在采煤工作面回风顺槽布置顶板走向高位钻孔对采空区瓦斯进行治理。通过具体试验并对比抽采浓度情况,确定孟津煤矿11010工作面裂隙带高度应在27~35 m,最终认定将钻孔终孔点布置在距煤层顶板25和35 m处时的瓦斯抽采效果最好。 相似文献
2.
3.
4.
为解决鹿台山煤矿2#煤层回采工作面上隅角瓦斯浓度频繁超限的问题,以2205工作面为例对高位钻孔抽采技术进行优化。通过UDEC软件模拟研究表明,采空区导气裂隙带发育高度为80 m,“O”形圈宽度范围为距采空区边缘10~46 m,确定最佳布置层位为距煤层顶板50 m,设计高位钻孔的布置参数。工作面回采期间,高位钻孔平均抽放量31 246.5 m3,上隅角瓦斯浓度稳定在0.14%~0.47%,抽采效果良好,保障了工作面的安全高效生产。 相似文献
5.
为了进一步治理综采工作面瓦斯超限现象,对凤凰山矿1301工作面瓦斯来源进行了分析,并采用高位钻孔抽采工作面的瓦斯,通过抽采,工作面处最大的瓦斯浓度为0.28%,采空区处最大的瓦斯浓度为1.40%,瓦斯抽放效果明显,说明钻孔设计比较合理,达到了预期的效果。 相似文献
6.
综放工作面高位裂隙钻孔瓦斯抽放技术实践 总被引:1,自引:0,他引:1
针对矿区煤层透气性系数低、采前瓦斯预抽效果差、工作面瓦斯易超限的实际情况,鹤壁三矿通过高位裂隙抽放钻孔对煤岩层卸压带瓦斯进行抽放,解决了工作面的瓦斯超限问题,实现了安全生产,为矿区瓦斯治理提供了一种有效途径。 相似文献
7.
介绍了芦岭煤矿8煤顶分层工作面顶板高位钻孔的布置及抽放效果,并分析判断出顶板裂隙带高度,对顶板钻孔抽放技术的应用有一定的借鉴作用。 相似文献
8.
高产高效工作面顶板走向钻孔瓦斯抽采技术 总被引:24,自引:0,他引:24
以祁南煤矿349工作面为工程背景,结合采场围岩控制理论,分析了高产高效工作面采空区上覆岩层移动及裂隙发育特征;得出工作面推进速度与顶板走向抽采钻孔在垂向上的布置高度成反比关系.349工作面顶板走向钻孔参数优化和抽放效果实践表明,当工作面推进速度为5~6 md时,顶板走向钻孔应布置在冒落带范围的岩层中,即钻孔终孔与煤层顶板垂距为10~15 m,前后钻场钻孔压茬为50 m,可以确保顶板走向钻孔较高的利用率,并得到很好的抽采效果,满足采煤工作面的安全生产要求. 相似文献
9.
河南能化焦煤公司中马村矿为严重煤与瓦斯突出矿井,随着矿井开采水平的延深,煤层瓦斯含量也随之增加,瓦斯问题始终威胁着矿井的安全生产,尤其是顶层回采工作面上隅角瓦斯问题严重制约着工作面的回采安全。通过在工作面回风巷道内施工高位抽采钻孔,对高位钻孔瓦斯抽采浓度和瓦斯流量数据的分析,对比钻孔终孔位置与工作面相对位置变化关系的研究,得出顶层回采工作面采空区瓦斯最佳抽采效果时的高位钻孔施工参数,以工作面回采动压形成的顶板裂隙作为通道对采空区积聚的瓦斯进行抽采,从而降低工作面采空区瓦斯浓度,避免上隅角瓦斯超限,实现矿井安全生产的目的。 相似文献
10.
为保证采煤工作面瓦斯抽采效果,针对挖金湾煤矿采空区瓦斯高、治理难度大问题,提出并实施高位钻孔抽采瓦斯技术。根据工作面采空区覆岩沉降特征,研究高位钻场布置位置,计算确定高位钻孔施工技术参数。通过在8107工作面进行高位钻孔抽采瓦斯技术试验,并与高位顶板抽放巷抽采瓦斯效果进行对比分析,结果表明高位钻孔抽采瓦斯浓度、纯量和有效抽采时间均高于高位巷抽采。 相似文献
11.
12.
13.
为了防止常村矿2103工作面上隅角瓦斯超限,基于“O”形圈理论以及采空区上覆岩层裂隙发育规律,提出在其顶板布置高抽巷抽采采空区瓦斯。采用理论计算与数值模拟相结合的方法分析预测采空区上覆岩层裂隙发展规律,确定了主要裂隙发育带范围为22.9~36.6m;并通过现场测试单孔瓦斯抽采量与工作面的推进关系得到裂隙发育带范围为23.3~38.9m,验证了理论计算与数值模拟结果的正确性。为防止高抽巷被破坏,选取距离冒落拱的安全保险高度为1.5倍采高,将高抽巷层位设计为31.5~36.6m。 相似文献
14.
15.
16.
针对焦家寨矿所采工作面上隅角、后部刮板输送机机尾瓦斯超限问题,采取了上隅角埋管抽放、本层斜交钻孔抽放和顶板走向高位裂隙钻孔抽放方法,并对以上3种抽放方法及效果进行了比较。应用结果表明:上隅角埋管抽放措施虽施工量小,但抽放率低(<5%);本层斜交高位钻孔抽放措施虽抽放率较高(15%~20%),但施工量大;相比之下,顶板走向高位裂隙钻孔抽放率达30%以上,可将采空区冒落带、裂隙带高浓度瓦斯抽走,降低了风排瓦斯量,保障了焦家寨矿工作面的安全生产。 相似文献
17.
为提高高位钻孔的抽放效果,利用浓度法对漳村煤矿的裂隙带高度进行了现场考察,并根据考察结果对高位钻孔的布置参数进行了优化,并将优化后高位钻孔抽采技术应用于2203工作面。抽采结果表明,优化后高位钻孔抽放措施有效地解决了上隅角瓦斯超限问题。 相似文献
18.
为解决常村煤矿工作面巷道采用“两进两回”设计,煤损失量大,瓦斯抽采效率低问题,利用FLAG3D模拟回采过程中上覆岩层破坏规律,确定了距3号煤层顶板31m处的K8岩层为关键层,采用UDEC模拟回采过程中上覆岩层裂隙发育及分布规律,得到工作面走向方向裂隙发育区域为距开切眼后方5~48 m;竖直方向裂隙发育区域垂高距煤层顶板21~31 m;开切眼上方采空区断裂带宽度约为40 m,工作面上方断裂带宽度约为48 m;巷帮两侧裂隙发育区域宽度略小于40 m.根据现场对2103工作面邻近S-39工作面裂隙带测试结果,表明上覆岩层裂隙发育带位于煤层顶板36 m范围内,与数值模拟结果比较吻合.根据数值模拟与现场测试结果,设计了2103工作面高位瓦斯抽采巷参数:水平层位距回风巷30~45 m,竖直层位距煤层顶板约27 m. 相似文献
19.
为了有效治理采空区上隅角瓦斯,针对九里山矿16041工作面采用定向高位长钻孔抽采上隅角瓦斯的现状,利用UDEC软件对工作面上覆岩层塑性区进行模拟,并结合现场试验,确定了定向高位长钻孔最佳抽采位置应为距离顶板13~25 m内。抽采结果表明:工作面上隅角平均瓦斯体积分数从0.78%下降到0.31%,回采工作面推进速度从3.6 m/d提高到4.8 m/d,提高了约1.33倍,保证了工作面回采安全。 相似文献