首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this letter we report the first synthesis of a fluorescein-functionalized fullerene, N-fluorescein-5-isothiocyanate pyrrolidine-C60, and its influence on the electrical properties of a bimolecular lipid model membrane.  相似文献   

2.
Internalization of biocompatible magnetic nanoparticles by red blood cells (RBCs) is a key issue for opportunities of new applications in the biomedical field. In this study, we used in vitro tests to provide evidences of magnetic nanoparticle internalization by mice red blood cells. The internalization process depends upon the nanoparticle concentration and the nanoparticle hydrodynamic radii. The cell internalization of surface-coated maghemite nanoparticles was indirectly tracked by Raman spectroscopy and directly observed using transmission electron microscopy. The observation of nanoparticle cell uptaking using in vitro experiments represents an important breakthrough for the application of nanomagnetism in diagnosis and therapy of RBC-related diseases.  相似文献   

3.
Abstract

Gold nanoparticles (Au NPs) possess many advantages such as facile synthesis, controllable size and shape, good biocompatibility, and unique optical properties. Au NPs have been widely used in biomedical fields, such as hyperthermia, biocatalysis, imaging, and drug delivery. The broad application range may result in hazards to the environment and human health. Therefore, it is important to predict safety and evaluate therapeutic efficiency of Au NPs. It is necessary to establish proper approaches for the study of toxicity and biomedical effects. In this review, we first focus on the recent progress in biological effects of Au NPs at the molecular and cellular levels, and then introduce key techniques to study the interaction between Au NPs and proteins. Knowledge of the biomedical effects of Au NPs is significant for the rational design of functional nanomaterials and will help predict their safety and potential applications.  相似文献   

4.
Algal polysaccharides may assist in the incorporation of metal ions from water and also have applications in health, interacting with biomembranes. In this paper, we have exploited the interactions at the molecular level of an extract of extracellular algal polysaccharide (EPS) with biomembrane models (lipid Langmuir monolayers). From surface pressure–area isotherms and Polarization Modulation Infrared Reflection–Absorption Spectroscopy (PM-IRRAS), we have inferred that EPS interacts with both kinds of lipids: a negatively charged and a positively charged, however with different mechanisms of action. EPS, being negatively charged, interacts with the polar heads of the positively charged lipid monolayer, while for a negatively charged lipid forming the Langmuir film, EPS penetrates into the alkyl chains of lipid in a mechanism driven mainly by hydrophobic interactions. The insights obtained in this paper are relevant because these help to understand the action of EPS in biomembranes and enable future applications of EPS–lipid hybrid Langmuir–Blodgett films for heavy metal ion sensors.  相似文献   

5.
Dewen Ye  Yan Li  Ning Gu 《Nano Research》2018,11(6):2970-2991
With superior biocompatibility and unique magnetic properties, iron-based nanoparticles (IBNP) are commonly encapsulated in cells and extracellular vesicles (EV) to allow for magnetic force controlled drug delivery and non-invasive tracking. Based on their natural source and similar morphology, we classify both cells and EVs as being natural lipid encapsulations (NLEs), distinguishing them from synthetic liposomes. Both their imaging contrast and drug effects are dominated by the amount of iron encapsulated in each NLE, demonstrating the importance of magnetic labeling efficiency. It is known that the membranes function as barriers to ensure that substances pass in and out in an orderly manner. The most important issue in increasing the cellular uptake of IBNPs is the interaction between the NLE membrane and IBNPs, which has been found to be affected by properties of the IBNPs as well as NLE heterogeneity. Two aspects are important for effective magnetic labelling: First, how to effectively drive membrane wrapping of the nanoparticles into the NLEs, and second, how to balance biosafety and nanoparticle uptake. In this review, we will provide a systematic overview of the magnetic labeling of NLEs with IBNPs. This article provides a summary of the applications of magnetically labeled NLEs and the labeling methods used for IBNPs. The review also analyzes the role of IBNPs physicochemical properties, especially their magnetic properties, and the heterogeneity of NLEs in the internalization pathway. At the same time, the future development of magnetically labeled NLEs is also discussed.
  相似文献   

6.
The physicochemical properties of gold nanoparticles (GNPs) functionalized with peptides and N-methylated peptides were studied with respect to their interaction with beta-amyloid (1-42). Peptides with sequences of CGGIGLMVG and CGGGGGIGLMVG linked with GNPs of an average diameter of 13 nm were employed for this study. The peptide-GNPs were found to be soluble and dispersed at pH 7.4 in a sodium phosphate aqueous buffer solution. The resonance spectra of each peptide coated GNP was measured in the absence and presence of beta-amyloid (1-42). The difference in the intensity of the lambda(max) of the resonance absorption bands was attributed to the interaction of the functionalized GNPs with the protein. Particles bearing the CGGGGGIGLMVG sequence exhibited the largest change in lambda(max) intensity; the prevention of fibril formation and inhibition of cytotoxicity was also examined.  相似文献   

7.
利用膜气液接触器制备了纳米CaCO3、SrCO3、Al(OH)3和Al2O3粒子.根据气液反应理论预测了Ca(OH)2浓度、CO2分压等对CO2吸收速率的影响规律,并得到了实验验证.在实验条件下,Ca(OH)2浓度和CO2分压对CaCO3粒子的形貌影响较小,粒径约为70nm.添加PVP和PEG后,粒度降为48nm左右,分散性明显提高.所得SrCO3纳米粒子为球形,粒度均匀,Sr(OH)2浓度对粒子粒度具有明显影响.Al(OH)3粒子为球形,50nm左右,煅烧后得到Al2O3,粒子尺寸增加至70nm左右.反应后用稀盐酸清洗膜使之再生,膜重复使用9次,膜传质系数未见明显降低.  相似文献   

8.
In vivo cytogenetical assay in root meristems has been carried out to study the effect of cobalt and cobalt oxide nanos on active mitotic index and chromosomal aberrations of green manure crop, Sesbania pea. Nanoparticles are nanosize particles and can enter freely into the cells and can interfere in cell's normal function. Studies to justify its probable after-effects on living beings are scarce. So it is important to study its effect on living beings. For this purpose, seeds of Sesbania cannabina variety ND-1 were soaked in distilled water for 14 hours and after soaking, the seeds were treated with three different treatments, namely, nano-cobalt, nano-cobalt oxide and ethanol for three hours. The treated root meristems exhibited various types of chromosomal aberrations such as metaphasic plate distortion, unorientation at metaphase, breaking of chromosomes, fragmentation, spindle dysfunctioning, stickiness, scattering, precocious movement at metaphase and bridge, unequal separation, multiple bridge, fragmentation, scattering, laggard and unorientation at anaphase, etc.  相似文献   

9.
微型支撑双层类脂膜pH电极的研制   总被引:1,自引:0,他引:1  
把对氢质子敏感的四氯对位苯醌 (TCPBQ)置于在不锈钢丝末端的双层类脂膜 (s -BLM)里 .然后将这种固体支撑的s -BLM作为工作电极 ,Ag -AgCl电极作为参比电极 ,在各种pH水溶液里测得的电动势与pH的关系符合Nernst公式 .这种s -BLM电极易于制备 ,尺寸很小 (直径只有 0 .2mm) ,能在两天内保持稳定 .用这种电极对常规pH计难以测定的水包油型乳状液的pH作了测定 ,得到较好的结果 .  相似文献   

10.
The physical interaction between a lipid vesicle and a silver nanoparticle (AgNP)-human serum albumin (HSA) protein "corona" has been examined. Specifically, the binding of AgNPs and HSA was analyzed by spectrophotometry, and the induced conformational changes of the HSA were inferred from circular dichroism spectroscopy. The fluidity of the vesicle, a model system for mimicking cell membrane, was found to increase with the increased exposure to AgNP-HSA corona, though less pronounced compared to that induced by AgNPs alone. This study offers additional information for understanding the role of physical forces in nanoparticle-cell interaction and has implications for nanomedicine and nanotoxicology.  相似文献   

11.
12.
The interaction of lysozyme (Lyz)-conjugated silver (Ag) nanoparticles with (-)-epigallocatechin gallate (EGCG), one of the major components of green tea, has been investigated. Interaction of a protein with ligand/drug molecules perturbs the conformation of secondary and tertiary structures of the protein. We have demonstrated the conformational changes in the tertiary structures of the Lyz molecules on EGCG binding using surface-enhanced Raman scattering (SERS) and circular dichroism (CD) spectroscopic measurements. From the analysis of the amide I band of Lyz in SERS and CD spectra, the site of interaction of EGCG with protein molecules in Lyz-conjugated Ag particles has been identified. Spectroscopic evidence for the conformational response of Trp62 and Trp63, in the β-domain of the protein, to the binding of EGCG has been discussed.  相似文献   

13.
Understanding the effect of lipid and surfactant composition on particle size and colloidal stability plays a pivotal role in designing lipid nanoparticles (LN) for drug delivery. With respect to our long-term goal, LN for brain delivery, formulations containing lipids and surfactants suitable for intravenous (i.v.) application were selected for the current formulation screening study. LN were prepared by hot high pressure homogenization (HPH) and were characterized during 1 year in terms of macroscopic appearance, particle size by photon correlation spectroscopy (PCS) and optical single particle sizing (OSPS), zeta potential (ZP), as well as physical state and polymorphism by differential scanning calorimetry (DSC). The LN dispersions showed a wide variability in macroscopic appearance, mean size and colloidal stability. Influence factors were the type and concentration of both, the lipid and surfactant component used. The most promising LN showed a small mean size (< 200 nm), a low polydispersity index (PI), (< 0.25) absence of particles in the several-micron range, and a slightly negative ZP (> -12 mV); DSC revealed that some represented supercooled liquids; such LN may be stable at room temperature for at least 1 year. The obtained results are regarded helpful for defining the design space for LN delivery systems, i.e., identifying possible designs and design parameters within the given HPH technology to be applied during future formulation development studies.  相似文献   

14.
Liposomes are widely used in industrial engineering systems including cosmetics and pharmaceutical and biotechnological applications. A fundamental understanding of the dynamics of lipid bud formation is required to efficiently produce various high-technological liposomes with well-controlled sizes and shapes. In this study, a novel patterning method of controlling the uniformity of the sizes and shapes of liposome buds nucleated from a flat lipid film casted on a flat substrate is reported. The dried-out lipid components had been swelling during aqueous hydration, and they pinched away in approximately one hour. The sizes and spacing of the liposome buds were monitored during hydration. It was observed that the average size of the buds slowly increased, but their spacing did not significantly change. Moreover, the bud size distribution was a very narrow Gaussian, which implies the formation of buds with uniform sizes. The analytical calculation of the equilibrium state was theoretically developed and compared with the experiments. It is envisioned that this study will provide insights on a sustained-release drug vehicle.  相似文献   

15.
This study explores the potential antimicrobial mechanisms of commercial silver nanoparticles (Ag NPs) in the environmental bacterium, Pseudomonas chlororaphis O6. The 10nm size NPs aggregated in water, as demonstrated by atomic force microscopy. Solubility of the NPs at 10mg/L was 0.28 mg/L (pH 6) and 2.3mg/L (pH 7); release from 10mg/L bulk Ag was below detection. The NPs eliminated cell culturability at 3mg/L, whereas no effect was observed at 10mg/L bulk Ag. Zeta potential measurements revealed that the NPs were negatively charged; unlike Ag ions, their addition to the negatively charged cells did not change cell charge at pH 6, but showed a trend to reduce cell charge at pH 7. Isolated extracellular polymeric substances (EPS) from PcO6 was polydisperse, with negative charge that was neutralized by Ag ions, but not by the NPs. Addition of EPS eliminated Ag NP's toxicity in cells lacking EPS. Intracellular accumulation of OH was not detected in NP-treated cells; however, the use of scavengers suggested the NPs caused extracellular H(2)O(2) production. No evidence was found for loss of membrane integrity upon treatment with the NPs. Our findings indicate that growth of environmental bacteria could be impaired by Ag NPs, depending on the extent of EPS production.  相似文献   

16.
The objectives of this study were to synthesize and characterize functionalized solid lipid nanoparticles (fSLN) to investigate their interaction with endothelial cell monolayers and to evaluate their transendothelial transport capabilities. fSLN bearing tetramethylrhodamine-isothiocyanate-labeled bovine serum albumin (TRITC-BSA) and Coumarin 6 were prepared using a single-step phase-inversion process that afforded concurrent surface modification with a variety of macromolecules such as polystyrene sulfonate (PSS), poly-L-lysine (PLL), heparin (Hep), polyacrylic acid (PAA), polyvinyl alcohol, and polyethylene glycol (PEG). TRITC-BSA/Coumarin 6 encapsulated in fSLN with composite surface functionality (PSS-PLL and PSS-PLL-Hep) were also investigated. Size and surface charge of fSLN were analyzed using dynamic light scattering and transmission electron microscopy. Transport across bovine aortic endothelial cell (BAEC) monolayers was assessed spectrophotometrically using a transwell assay, and fSLN localization at the level of the cell and permeable support was analyzed using fluorescence microscopy. fSLN with tunable size and surface functionality were successfully produced, and had significant effects on cell localization and transport. Specifically, fSLN with PSS-PLL-Hep composite surface functionalization was capable of translocating 53.2 +/- 8.7 mug of TRITC-BSA within 4 h, with fSLN-PEG, fSLN-PAA, and fSLN-PSS exhibiting near-complete apical, paracellular, and cytosolic localization, respectively. Coumarin 6 was released by fSLN as indicated by dye labeling of BAEC membranes. We have developed a rapid process for the production of fSLN bearing low- and high-molecular-weight payloads of varying physicochemical properties. These findings have impications for drug delivery and bioimaging applications, since due to tunable surface chemistry, fSLN internalization and/or translocation across intact endothelial cell monolayers is possible.  相似文献   

17.
Preparation and characterization of camptothecin solid lipid nanoparticles   总被引:9,自引:0,他引:9  
Camptothecin (CA), an antitumor drug, was incorporated into solid lipid nanoparticles (SLNs) prepared by high-pressure homogenization. A Taguchi orthogonal experimental design was used to study the influence of four different variables, with each variable having three value levels on nanoparticle size. Analysis of variance (ANOVA) has been used to evaluate the preparation of CA-SLNs and perform product optimization. The optimized CA-SLNs suspension was lyophilized using mannitol and glucose as cryoprotectants. The physicochemical characteristics of CA-SLNs were evaluated using transmission electron microscopy (TEM), electrophoresis, and differential scanning calorimetry (DSC). The release of camptothecin from CA-SLNs in various media was evaluated using a high-performance liquid chromatography (HPLC) method. The results showed that the concentration of emulsifier and the homogenization pressure had a significant influence on the particle size. The optimized CA-SLNs had an average diameter of about 200 nm, exhibited monodispersity with Dw/Dn of 1.06, and carried a negative charge. The optimal cryoprotectants consisted of 10% mannitol and 5% glucose in nanoparticle suspension. Lyophilized product was reconstituted in distilled water within 0.5 min without change of nanoparticle size. Camptothecin might exist in an amorphous state in SLNs. In vitro results showed that drug release was achieved for up to one week, and the released camptothecin quickly changed to open carboxylate form in the biological pH phosphate buffer. The results indicate that SLNs might be good potential sustained-release delivery vehicles for camptothecin or other lipophilic drugs.  相似文献   

18.
Poor solubility of newly developed drug molecules is the main problem in recent drug discovery research, so novel drug delivery approaches are being used to deliver these molecular entities for pharmacological action. Colloidal carriers (emulsion, suspensions, liposomes, polymer nanoparticles and solid lipid nanoparticles) have been used to administer poorly soluble drugs, but solid lipid nanoparticles are found to be the most reliable carriers for this type of drugs due to its advantages over other carriers. Solid lipid nanoparticles have the potential to solve the drug delivery problems with safe excipients used in its formulation. In this review all the aspects of solid lipid nanoparticles production, stability, characterization, differentiation based on route, preservation and storage have been discussed.  相似文献   

19.
Cellular transport requires that membranes have the ability to recruit specific lipids and proteins to particular positions and at specific times. Here, we review recent work showing that lipids and proteins can be redistributed by spatially varying membrane curvature, without necessarily the need for biochemical targeting signals. We present here an emerging understanding of the various mechanisms by which membrane curvature can sort lipids and proteins, providing the experimental methods in addition to the supporting theoretical concepts.  相似文献   

20.
Objective: The present study discusses paclitaxel (PTX)-loaded mannosylated-DSPE (Distearoyl-phosphatidyl-ethanolamine) solid lipid nanoparticles (M-SLNs) using mannose as a lectin receptor ligand conjugate for lung cancer targeting and to increase the anticancer activity of PTX against A549 lung’s epithelial cancer cells.

Materials and methods: The PTX-SLNs were prepared by solvent injection method and mannose was conjugated to the free amine group of stearylamine. The M-SLNs obtained were characterized for their particle size, polydispersity index, zeta potential and morphology by transmission electron microscope.

Results: The M-SLNs were spherical in shape with 254?±?2.3?nm average size, positive zeta potential (3.27?mV), 79.4?±?1.6 drug entrapment efficiency and showed the lower extent of drug release 40% over 48?h in vitro. Cytotoxicity study on A549 cell lines and biodistrubtion study of drug revealed that M-SLNs deliver a higher concentration of PTX as compared to PTX-SLNs in an alveolar cell site.

Discussion and conclusion: These results suggested that mannosylated M-SLNs are safe and potential vector for lung cancer targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号