首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
模糊逻辑技术是二十一世纪的核心技术   总被引:1,自引:0,他引:1  
模糊逻辑技术是一种面向未来的新技术,近年来日本人使其走向市场,给这种技术注入了省略,它的初级应用有力地说明了它所具有的强大生命力。在人工智能专家系统,模式识别和机器人控制中、模糊逻辑的应用有着令人激动的良好前景,模糊逻辑技术与神经网络的结合更是一种相得益彰的互利技术。  相似文献   

2.
为了解决在作业时水下机器人载体上的机械手伸展过程将会引起载体重心发生变化,导致水下机器人发生纵横倾运动,影响作业效率的问题,考虑到水下机器人控制系统较为复杂,因此引入模糊滑模控制,根据要求设计出一款模糊滑模控制器。利用计算机和MATLAB技术,将水下机器人姿态运动方程与常规PID控制和模糊滑模控制分别结合起来进行仿真分析。仿真结果表明,模糊滑模控制相比于常规PID控制,在机械手关节正弦运动过程中,姿态角下降了20%以上,横倾姿态角度误差减小了30%以上,纵倾姿态角误差也超过了8%以上。在悬停作业过程中,纵横倾姿态角度都下降了30%以上。通过两种不同控制方式的仿真,验证了模糊滑模控制的控制效果要优于常规PID控制,能够取得更好的控制效果,同时利用计算机技术缩短了研究时间、提高了研究效率。  相似文献   

3.
目前,自治式水下机器人(Autonomous Underwater Vehicle,AUV)、自动导引驾驶小汽车、轮船等领域应用模糊规则控制已经受到许多人的关注,模糊规则的制定与训练是其中之关键所在,该文将模朔规则控制应用在无人机自由编队飞行控制中。在训练模糊规则过程中,常规的BP神经网络法存在学习速度慢、无法结合号家知识以及容易陷入局部最小等缺点,为了克服上述不足,文中引人了补偿模糊神经网络,它足一个结合了补偿模糊逻辑和神经网络的混合系统,由面向控制和面向决策的神经元组成,其模糊运算采用动态的、全局优化运算,学习速度快、学习过程稳定。将其用于无人机自由编队飞行的模糊控制规则进行训练,结果表明用补偿模糊神经网络刘模糊规则的训练效果良好。  相似文献   

4.
肖质红 《微计算机信息》2006,22(35):182-184
近年来,室内移动机器人的研究和设计成为关注的焦点。我们采用单片机作为机器人的核心控制器,利用超声波传感器、碰撞传感器、步进电机及其控制芯片Ta8435联合制作开发了机器人实验平台。最后介绍了模糊控制、模糊神经网络,并利用模糊控制和模糊神经网络技术对室内机器人导航中的模糊控制避障和模糊神经网络路径跟踪作了MATLAB仿真研究,达到了预期的目的。  相似文献   

5.
王耀南教授所著的《智能控制系统一模糊逻辑·专家系统·神经网络控制》一书,由湖南大学出版社出版,新华书店总店科技发行所发行。 该书系统地介绍了智能控制的基本理论和设计方法及其在计算机控制系统中的应用。全书共分11章,内容包括模糊逻辑控制、专家系统和专家智能控制、神经网络基本理论、神经网络系统辨识、神经网络智能控制系统、神经网络自适应控制系统、模糊神经网络与控制、神经网络最优控制系统,遗传算法与智能控制系统、综合智能控制系统的工程应用(工业过程控制、机器人控制、伺服控制等),附有本书的部分仿真程序清单和软件。  相似文献   

6.
机器人因其高效的感知、决策和执行能力,在人工智能、信息技术和智能制造等领域中具有巨大的应用价值。目前,机器人学习与控制已成为机器人研究领域的重要前沿技术之一。各种基于神经网络的智能算法被设计,从而为机器人系统提供同步学习与控制的规划框架。首先从神经动力学(ND)算法、前馈神经网络(FNNs)、递归神经网络(RNNs)和强化学习(RL)四个方面介绍了基于神经网络的机器人学习与控制的研究现状,回顾了近30年来面向机器人学习与控制的智能算法和相关应用技术。最后展望了该领域存在的问题和发展趋势,以期促进机器人学习与控制理论的推广及应用场景的拓展。  相似文献   

7.
基于模糊神经网络的5连杆双足机器人混杂控制   总被引:3,自引:0,他引:3       下载免费PDF全文
针对双足机器人单脚支撑期控制问题, 提出了一种新型的模糊神经网络混杂控制方法. 该种方法结合了模糊神经网络、H 控制及逆系统方法的优点. 应用了一种新的多层模糊CMAC神经网络对系统进行逼近, 一方面将模糊神经网络的构造误差看作系统的干扰, 利用H 控制对干扰进行抑制. 另一方面利用模糊神经网络对系统模型进行逼近, 为逆系统的构建和H 控制率的设计提供了有效的系统信息. 并证明了在采用本文提出的模糊神经网络和自适应算法后可以抑制 L2 增益.  相似文献   

8.
基于Cortex-M0微控制器设计超声波、红外和碰撞等多传感器硬件系统感知机器人工作环境,应用模糊神经网络对采集的数据进行信息融合处理,输出结果用来控制吸尘机器人的定位与避障。实验证明,多传感器硬件系统和基于模糊神经网络的避障算法大大提高了吸尘机器人的定位与避障精度,对不同的工作环境也具有良好的鲁棒性。  相似文献   

9.
杨超  张铭钧  吴珍臻  张志强  姚峰 《机器人》2021,43(2):224-233
本文主要研究作业型自主式水下机器人(AUV)的纵、横倾姿态自适应区域控制问题.在实际作业中,机械手作业干扰和环境不确定性等因素将影响作业过程的艇体姿态控制,进而影响运动、作业的精度.针对此姿态稳定性控制问题,提出一种基于RBF(径向基函数)神经网络的水下机器人姿态自适应区域控制方法.针对系统模型的不确定因素,采用RBF神经网络对其进行在线估计,引入滑模控制项对估计误差进行在线补偿;针对RBF神经网络控制参数的取值问题,设计网络权值、径向基中心与方差的在线调整律,对控制参数进行自适应学习,以适应机器人艇体的不同姿态变化;针对艇体姿态的快速稳定收敛需求,在区域控制器中加入PI(比例-积分)环节,缩短姿态调节时间、降低稳态误差.基于李亚普诺夫稳定性分析,从理论上证明区域控制误差一致渐近稳定.最后,通过作业型水下机器人样机的纵、横倾姿态控制实验,验证了本文方法的有效性.  相似文献   

10.
针对目前轮式机器人在路径跟踪时容易出现的偏离期望路径甚至打滑、侧翻失去控制等问题,对轮式机器人结构及其路径跟踪特点进行了分析,构建了轮式机器人运动学模型,设计了一种基于模糊神经网络(FNN)的行进路线和行驶速度分级控制的路径跟踪方法.第一级中模糊神经网络利用机器人位姿信息确定行进路线即转弯半径,第二级根据前方路径情况和转弯半径调节机器人行驶的角速度和线速度.仿真实验表明,所设计的模糊神经网络能够对所期望的路径进行快速准确地拟合,且鲁棒性强;轮式机器人路径跟踪过程稳定,不会出现失控现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号