首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin-Binding Growth-Associated Molecule (HB-GAM)/pleiotrophin is an 18 kDa extracellular matrix- and cell-surface-associated protein shown to enhance neurite outgrowth of perinatal forebrain neurones in vitro. The heparan sulphate proteoglycan N-syndecan (Raulo et al., 1994) has been isolated as a receptor/coreceptor for the HB-GAM. We have investigated, whether HB-GAM and N-syndecan could have a similar role in neurite outgrowth and axon guidance in early axonal tracts of brain. In the present study N-syndecan was found to be spatiotemporally associated with the developing axonal tracts already on embryonic day 9 in rat, as revealed by coexpression with class III beta-tubulin, which is one of the earliest neuronal markers (Easter et al., 1993; Brittis et al., 1995). Later, N-syndecan and HB-GAM were detected in the first afferent serotonergic projections arising from the pontine raphe nuclei. The expression pattern of HB-GAM peaked in the developing rhombencephalon at embryonic stage (E) 13-14. At the same time, N-syndecan was expressed in the developing raphe neurones growing neurites towards the diencephalon along HB-GAM immunoreactive pathways. When rhombencephalic neurones were cultured on decreasing concentrations of substrate-bound HB-GAM, E13 neurones showed a significantly better neurite outgrowth response than E11, E16 or E18 neurones. The neurite outgrowth of raphe neurones in vitro was inhibited by adding soluble heparin or N-syndecan into the culture medium, whereas addition of chondroitin sulphate had no effect. In a simple pathway assay, E13 raphe neurones selectively preferred attaching and growing neurites on pathways containing HB-GAM as compared with regions containing either laminin or fibronectin alone. Our results suggest that HB-GAM may function as a developmentally regulated cue for rhombencephalic neurones that possess N-syndecan on their cell membrane.  相似文献   

2.
Bone has an enormous capacity for growth, regeneration, and remodeling. This capacity is largely due to induction of osteoblasts that are recruited to the site of bone formation. The recruitment of osteoblasts has not been fully elucidated, though the immediate environment of the cells is likely to play a role via cell- matrix interactions. We show here that heparin-binding growth-associated molecule (HB-GAM), an extracellular matrix-associated protein that enhances migratory responses in neurons, is prominently expressed in the cell matrices that act as target substrates for bone formation. Intriguingly, N-syndecan, which acts as a receptor for HB-GAM, is expressed by osteoblasts/osteoblast precursors, whose ultrastructural phenotypes suggest active cell motility. The hypothesis that HB-GAM/N-syndecan interaction mediates osteoblast recruitment, as inferred from developmental studies, was tested using osteoblast-type cells that express N-syndecan abundantly. These cells migrate rapidly to HB-GAM in a haptotactic transfilter assay and in a migration assay where HB-GAM patterns were created on culture wells. The mechanism of migration is similar to that previously described for the HB-GAM-induced migratory response of neurons. Our hypothesis that HB-GAM/N-syndecan interaction participates in regulation of osteoblast recruitment was tested using two different in vivo models: an adjuvant-induced arthritic model and a transgenic model. In the adjuvant-induced injury model, the expression of HB-GAM and of N-syndecan is strongly upregulated in the periosteum accompanying the regenerative response of bone. In the transgenic model, the HB-GAM expression is maintained in mesenchymal tissues with the highest expression in the periosteum. The HB-GAM transgenic mice develop a phenotype characterized by an increased bone thickness. HB-GAM may thus play an important role in bone formation, probably by mediating recruitment and attachment of osteoblasts/osteoblast precursors to the appropriate substrates for deposition of new bone.  相似文献   

3.
The low molecular weight phosphotyrosine-protein phosphatase (LMW-PTP) is a cytosolic phosphotyrosine-protein phosphatase specifically interacting with the activated platelet-derived growth factor (PDGF) receptor through its active site. Overexpression of the LMW-PTP results in modulation of PDGF-dependent mitogenesis. In this study we investigated the effects of this tyrosine phosphatase on the signaling pathways relevant for PDGF-dependent DNA synthesis. NIH 3T3 cells were stably transfected with active or dominant negative LMW-PTP. The effects of LMW-PTP were essentially restricted to the G1 phase of the cell cycle. Upon stimulation with PDGF, cells transfected with the dominant negative LMW-PTP showed an increased activation of Src, whereas the active LMW-PTP induced a reduced activation of this proto-oncogene. We observe that c-Src binding to PDGF receptor upon stimulation is prevented by overexpression of LMW-PTP. These effects were associated with parallel changes in myc expression. Moreover, wild-type and dominant negative LMW-PTP differentially regulated STAT1 and STAT3 activation and tyrosine phosphorylation, whereas they did not modify extracellular signal-regulated kinase activity. However, these modifications were associated with changes in fos expression despite the lack of any effect on extracellular signal-regulated kinase activation. Other independent pathways involved in PDGF-induced mitogenesis, such as phosphatidylinositol 3-kinase and phospholipase C-gamma1, were not affected by LMW-PTP. These data indicate that this phosphatase selectively interferes with the Src and the STATs pathways in PDGF downstream signaling. The resulting changes in myc and fos proto-oncogene expression are likely to mediate the modifications observed in the G1 phase of the cell cycle.  相似文献   

4.
Cortactin is an actin-binding protein that contains several potential signaling motifs including a Src homology 3 (SH3) domain at the distal C terminus. Translocation of cortactin to specific cortical actin structures and hyperphosphorylation of cortactin on tyrosine have been associated with the cortical cytoskeleton reorganization induced by a variety of cellular stimuli. The function of cortactin in these processes is largely unknown in part due to the lack of information about cellular binding partners for cortactin. Here we report the identification of a novel cortactin-binding protein of approximately 180 kDa by yeast two-hybrid interaction screening. The interaction of cortactin with this 180-kDa protein was confirmed by both in vitro and in vivo methods, and the SH3 domain of cortactin was found to direct this interaction. Since this protein represents the first reported natural ligand for the cortactin SH3 domain, we designated it CortBP1 for cortactin-binding protein 1. CortBP1 contains two recognizable sequence motifs within its C-terminal region, including a consensus sequence for cortactin SH3 domain-binding peptides and a sterile alpha motif. Northern and Western blot analysis indicated that CortBP1 is expressed predominately in brain tissue. Immunofluorescence studies revealed colocalization of CortBP1 with cortactin and cortical actin filaments in lamellipodia and membrane ruffles in fibroblasts expressing CortBP1. Colocalization of endogenous CortBP1 and cortactin was also observed in growth cones of developing hippocampal neurons, implicating CortBP1 and cortactin in cytoskeleton reorganization during neurite outgrowth.  相似文献   

5.
The functional significance of microtubule-associated protein 1B (MAP1B) phosphorylation during neuronal differentiation is unknown. In the present study we examined the hypothesis that the phosphorylation of MAP1B is required for neurite outgrowth. We reasoned that if MAP1B phosphorylation was important for neurite outgrowth then the intracellular distribution of phosphorylated MAP1B might exist as a discrete subset of the pattern for total MAP1B. We utilized a monoclonal antibody (mAb 7-1.1) that specifically recognizes a phosphorylated epitope on MAP1B and a polyclonal antiserum that recognizes all MAP1B protein to compare the distributions of phosphorylated and total MAP1B during neurite outgrowth. Phosphorylated MAP1B progressively accumulated in both the soluble and cytoskeletal fractions of differentiating cells. Similar proportions of total and phosphorylated MAP1B were associated with the cytoskeletons of differentiating PC12 cells. Within individual cells, phosphorylated MAP1B, in comparison with total MAP1B, was not limited to a particular intracellular domain. Phosphorylated MAP1B was present in both neurites and cell bodies. It was associated with fibrillar microtubules in neurites and growth cones, but it appeared nonfibrillar within cell bodies. In some cells that differentiated rapidly, there was little phosphorylated MAP1B in the early neurites despite the presence of extensive microtubules. In addition, although phosphorylated MAP1B increased in populations of mature PC12 cell cultures, increases in phosphorylated MAP1B did not always correlate with neurite outgrowth in individual cells. These results suggest that the phosphorylated isoform of MAP1B recognized by mAb 7-1.1 may not be required for neurite outgrowth.  相似文献   

6.
Rho-family GTPases regulate cytoskeletal dynamics in various cell types. p21-activated kinase 1 (PAK1) is one of the downstream effectors of Rac and Cdc42 which has been implicated as a mediator of polarized cytoskeletal changes in fibroblasts. We show here that the extension of neurites induced by nerve growth factor (NGF) in the neuronal cell line PC12 is inhibited by dominant-negative Rac2 and Cdc42, indicating that these GTPases are required components of the NGF signaling pathway. While cytoplasmically expressed PAK1 constructs do not cause efficient neurite outgrowth from PC12 cells, targeting of these constructs to the plasma membrane via a C-terminal isoprenylation sequence induced PC12 cells to extend neurites similar to those stimulated by NGF. This effect was independent of PAK1 ser/thr kinase activity but was dependent on structural domains within both the N- and C-terminal portions of the molecule. Using these regions of PAK1 as dominant-negative inhibitors, we were able to effectively inhibit normal neurite outgrowth stimulated by NGF. Taken together with the requirement for Rac and Cdc42 in neurite outgrowth, these data suggest that PAK(s) may be acting downstream of these GTPases in a signaling system which drives polarized outgrowth of the actin cytoskeleton in the developing neurite.  相似文献   

7.
The cellular mechanisms responsible for synaptic plasticity involve interactions between neurons and the extracellular matrix. Heparan sulfates (HSs) constitute a group of glycosaminoglycans that accumulate in the beta-amyloid deposits in Alzheimer's disease and influence the development of neuron-target contacts by interacting with other cell surface and matrix molecules. However, the contribution of HSs to brain function is unknown. We found that HSs play a crucial role in long-term potentiation (LTP), a finding that is consistent with the idea that converging molecular mechanisms are used in the development of neuron-target contacts and in activity-induced synaptic plasticity in adults. Enzymatic cleavage of HS by heparitinase as well as addition of soluble heparin-type carbohydrates prevented expression of LTP in response to 100 Hz/1 sec stimulation of Schaffer collaterals in rat hippocampal slices. A prominent carrier protein for the type of glycans implicated in LTP regulation in the adult hippocampus was identified as N-syndecan (syndecan-3), a transmembrane proteoglycan that was expressed at the processes of the CA1 pyramidal neurons in an activity-dependent manner. Addition of soluble N-syndecan into the CA1 dendritic area prevented tetanus-induced LTP. A major substrate of src-type kinases, cortactin (p80/85), and the tyrosine kinase fyn copurified with N-syndecan from hippocampus. Moreover, association of both cortactin and fyn to N-syndecan was rapidly increased after induction of LTP. N-syndecan may thus act as an important regulator in the activity-dependent modulation of neuronal connectivity by transmitting signals between extracellular heparin-binding factors and the fyn signaling pathway.  相似文献   

8.
Human leukemic cell line K562 is induced to differentiate into the megakaryocytic lineage by stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA). We demonstrate here that TPA stimulation increases tyrosine phosphorylation of an 80-kDa protein at an early stage of megakaryocytic differentiation and that this 80-kDa protein is identical with cortactin. Since tyrosine kinase Syk was activated by TPA stimulation, we examined the possibility that cortactin is a potential substrate of Syk in K562 cells. TPA-induced tyrosine phosphorylation of cortactin was decreased profoundly by overexpression of dominant-negative Syk. Furthermore, cortactin was associated with Syk even before TPA stimulation. Since cortactin was previously referred as an 80/85-kilodalton pp60src substrate, we examined the association between Src and cortactin, whereas its association could not be detected. These data suggest that Syk phosphorylates cortactin in K562 cells upon TPA treatment.  相似文献   

9.
Fibroblast growth factor 1 (FGF-1) induces neurite outgrowth in PC12 cells. Recently, we have shown that the FGF receptor 1 (FGFR-1) is much more potent than FGFR-3 in induction of neurite outgrowth. To identify the cytoplasmic regions of FGFR-1 that are responsible for the induction of neurite outgrowth in PC12 cells, we took advantage of this difference and prepared receptor chimeras containing different regions of the FGFR-1 introduced into the FGFR-3 protein. The chimeric receptors were introduced into FGF-nonresponsive variant PC12 cells (fnr-PC12 cells), and their ability to mediate FGF-stimulated neurite outgrowth of the cells was assessed. The juxtamembrane (JM) and carboxy-terminal (COOH) regions of FGFR-1 were identified as conferring robust and moderate abilities, respectively, for induction of neurite outgrowth to FGFR-3. Analysis of FGF-stimulated activation of signal transduction revealed that the JM region of FGFR-1 conferred strong and sustained tyrosine phosphorylation of several cellular proteins and activation of MAP kinase. The SNT/FRS2 protein was demonstrated to be one of the cellular substrates preferentially phosphorylated by chimeras containing the JM domain of FGFR-1. SNT/FRS2 links FGF signaling to the MAP kinase pathway. Thus, the ability of FGFR-1 JM domain chimeras to induce strong sustained phosphorylation of this protein would explain the ability of these chimeras to activate MAP kinase and hence neurite outgrowth. The role of the COOH region of FGFR-1 in induction of neurite outgrowth involved the tyrosine residue at amino acid position 764, a site required for phospholipase C gamma binding and activation, whereas the JM region functioned primarily through a non-phosphotyrosine-dependent mechanism. In contrast, assessment of the chimeras in the pre-B lymphoid cell line BaF3 for FGF-1-induced mitogenesis revealed that the JM region did not play a role in this cell type. These data indicate that FGFR signaling can be regulated at the level of intracellular interactions and that signaling pathways for neurite outgrowth and mitogenesis use different regions of the FGFR.  相似文献   

10.
11.
Protein tyrosine kinases of the Src family are negatively regulated by phosphorylation in the C-terminal tail of the molecule. A different protein tyrosine kinase, Csk, is largely responsible for this regulation. The phosphorylated tail of c-Src engages with the SH2 domain in a conformation that is associated with low kinase activity and which involves stabilization by the SH3 domain. Inducible expression of c-Src in fission yeast is lethal unless Csk is coexpressed. Using this assay we present evidence that Src regulation by C-terminal phosphorylation does not require the myristylation signal or the unique domain at the N-terminus of the Src protein. Mutagenesis of the SH3 and SH2 domains of Csk show that neither are necessary in yeast or in vitro for efficient regulation of Src. Mutation of Tyr416 of Src, a site of autophosphorylation common to most protein tyrosine kinases, abolished the ability of Src to arrest growth of phosphorylate endogenous proteins. Tyr416 had the same effect on a shorter form of Src consisting of the kinase domain only, indicating that the mutation affects a property intrinsic to the catalytic domain. The residual activity of full-length Src mutated at Tyr416 is efficiently repressed by Csk action, suggesting that regulation by C-terminal phosphorylation does not act by preventing phosphorylation at Tyr416.  相似文献   

12.
Our laboratory has previously demonstrated that 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) rapidly stimulated polyphosphoinositide (PI) hydrolysis, raised intracellular Ca2+, and activated two Ca2+-dependent protein kinase C (PKC) isoforms, PKC-alpha and -betaII in the rat large intestine. We also showed that the direct addition of 1,25(OH)2D3 to isolated colonic membranes failed to stimulate PI hydrolysis, but required secosteroid treatment of intact colonocytes, suggesting the involvement of a soluble factor. Furthermore, this PI hydrolysis was restricted to the basal lateral plasma membrane of these cells. In the present studies, therefore, we examined whether polyphosphoinositide-phospholipase C-gamma (PI-PLC-gamma), a predominantly cytosolic isoform of PI-PLC, was involved in the hydrolysis of colonic membrane PI by 1,25(OH)2D3. This isoform has been shown to be activated and membrane-associated by tyrosine phosphorylation. We found that 1,25(OH)2D3 caused a significant increase in the biochemical activity, particulate association, and the tyrosine phosphorylation of PLC-gamma, specifically in the basal lateral membranes. This secosteroid also induced a twofold increase in the activity of Src, a proximate activator of PLC-gamma in other cells, with peaks at 1 and 9 min in association with Src tyrosine dephosphorylation. 1,25(OH)2D3 also increased the physical association of activated c-Src with PLC-gamma. In addition, Src isolated from colonocytes treated with 1,25(OH)2D3, demonstrated an increased ability to phosphorylate exogenous PLC-gamma in vitro. Inhibition of 1,25(OH)2D3-induced Src activation by PP1, a specific Src family protein tyrosine kinase inhibitor, blocked the ability of this secosteroid to stimulate the translocation and tyrosine phosphorylation of PLC-gamma in the basolateral membrane (BLM). Src activation was lost in D deficiency, and was reversibly restored with the in vivo repletion of 1,25(OH)2D3. These studies demonstrate for the first time that 1,25(OH)2D3 stimulates PLC-gamma as well as c-Src in rat colonocytes, and indicate that PLC-gamma is a direct substrate of secosteroid-activated c-Src in these cells.  相似文献   

13.
Neural cell adhesion molecules of the immunoglobulin/fibronectin type III family on axons have been implicated in promotion of neurite outgrowth, fasciculation, and the mediation of specific cell adhesion. The present study demonstrates that two of these molecules on dorsal root ganglion neurons are associated with distinct protein kinases, axonin-1 with the src-related nonreceptor tyrosine kinase fyn and NgCAM with a casein kinase II-related activity and a serine/ threonine kinase related to S6 kinase. When neurites grew without contacts involving axonin-1 and NgCAM, strong fyn kinase activity was associated with axonin-1, whereas the NgCAM-associated kinase activities were low. Clustering of axonin-1 with NgCAM induced by the formation of cell-cell contacts correlated with a reduction of the axonin-1-associated fyn activity and an increased phosphorylation of NgCAM by the associated casein kinase II-related activity. Thus, axonin-1 and NgCAM trigger distinctive intracellular signals during in vitro differentiation depending on their state of association.  相似文献   

14.
The discovery of Rous sarcoma virus (RSV) led to the identification of cellular Src (c-Src), a non-receptor tyrosine kinase, which has since been implicated in the development of numerous human cancers. c-Src has been found to be highly activated in colon cancers, particularly in those metastatic to the liver. Studies of the mechanism of c-Src regulation have suggested that c-Src kinase activity is downregulated by phosphorylation of a critical carboxy-terminal tyrosine (Tyr 530 in human c-Src, equivalent to Tyr 527 in chicken Src) and have implied the existence of activating mutations in this C-terminal regulatory region. We report here the identification of a truncating mutation in SRC at codon 531 in 12% of cases of advanced human colon cancer tested and demonstrate that the mutation is activating, transforming, tumorigenic and promotes metastasis. These results provide, for the first time, genetic evidence that activating SRC mutations may have a role in the malignant progression of human colon cancer.  相似文献   

15.
The cytoplasmic domain of the syndecan family of heparan sulfate proteoglycans is punctuated by the presence of four regularly spaced tyrosine residues. In this report, we explore the possibility of whether the four tyrosine residues in the cytoplasmic domain of N-syndecan (Syndecan 3) are potential substrates for phosphorylation by a tyrosine kinase. Bacterially expressed elk kinase was used to phosphorylate a series of bacterially expressed N-syndecan fusion proteins. Our results clearly demonstrate that the tyrosine residues in the cytoplasmic domain of N-syndecan can be phosphorylated by a tyrosine-specific kinase, and that all four tyrosine residues are capable of being phosphorylated.  相似文献   

16.
We have found a factor that induces neurite outgrowth of rat PC12 cells in the culture supernatant of the cell line MLE-15A2. This factor was designated as MDDF. The factor was sensitive to protease, dithiothreitol, and high-temperature treatments. The apparent molecular mass was 80 kDa on Superdex 200 gel filtration. No significant tyrosine phosphorylation was detected after MDDF stimulation in Western blotting analysis with anti-phosphotyrosine antibody, suggesting that the signal transduction may not be mediated by a tyrosine kinase cascade that is involved in signaling of most of the known factors. Activation of MAP kinase was very weak and was seen only 5 min after stimulation, suggesting that prolonged activation of MAP kinase was not required for neurite outgrowth induced by MDDF. Because the biochemical characteristics of MDDF are different from those of any known peptide factors that induce neurite outgrowth of PC12 cells, MDDF may be a novel differentiation factor for PC12 cells.  相似文献   

17.
Several G protein-coupled receptors that interact with pertussis toxin-sensitive heterotrimeric G proteins mediate Ras-dependent activation of mitogen-activated protein (MAP) kinases. The mechanism involves Gbetagamma subunit-mediated increases in tyrosine phosphorylation of the Shc adapter protein, Shc*Grb2 complex formation, and recruitment of Ras guanine nucleotide exchange factor activity. We have investigated the role of the ubiquitous nonreceptor tyrosine kinase c-Src in activation of the MAP kinase pathway via endogenous G protein-coupled lysophosphatidic acid (LPA) receptors or by transient expression of Gbetagamma subunits in COS-7 cells. In vitro kinase assays of Shc immunoprecipitates following LPA stimulation demonstrated rapid, transient recruitment of tyrosine kinase activity into Shc immune complexes. Recruitment of tyrosine kinase activity was pertussis toxin-sensitive and mimicked by cellular expression of Gbetagamma subunits. Immunoblots for coprecipitated proteins in Shc immunoprecipitates revealed a transient association of Shc and c-Src following LPA stimulation, which coincided with increases in Shc-associated tyrosine kinase activity and Shc tyrosine phosphorylation. LPA stimulation or expression of Gbetagamma subunits resulted in c-Src activation, as assessed by increased c-Src autophosphorylation. Overexpression of wild-type or constitutively active mutant c-Src, but not kinase inactive mutant c-Src, lead to increased tyrosine kinase activity in Shc immunoprecipitates, increased Shc tyrosine phosphorylation, and Shc.Grb2 complex formation. MAP kinase activation resulting from LPA receptor stimulation, expression of Gbetagamma subunits, or expression of c-Src was sensitive to dominant negatives of mSos, Ras, and Raf. Coexpression of Csk, which inactivates Src family kinases by phosphorylating the regulatory C-terminal tyrosine residue, inhibited LPA stimulation of Shc tyrosine phosphorylation, Shc.Grb2 complex formation, and MAP kinase activation. These data suggest that Gbetagamma subunit-mediated formation of Shc.c-Src complexes and c-Src kinase activation are early events in Ras-dependent activation of MAP kinase via pertussis toxin-sensitive G protein-coupled receptors.  相似文献   

18.
Axonal growth cones respond to adhesion molecules and extracellular matrix components by rapid morphological changes and growth rate modification. Neurite outgrowth mediated by the neural cell adhesion molecule (NCAM) requires the src family tyrosine kinase p59(fyn) in nerve growth cones, but the molecular basis for this interaction has not been defined. The NCAM140 isoform, which is found in migrating growth cones, selectively co-immunoprecipitated with p59(fyn) from nonionic detergent (Brij 96) extracts of early postnatal mouse cerebellum and transfected rat B35 neuroblastoma and COS-7 cells. p59(fyn) did not associate significantly with the NCAM180 isoform, which is found at sites of stable neural cell contacts, or with the glycophosphatidylinositol-linked NCAM120 isoform. pp60(c-)src, a tyrosine kinase that promotes neurite growth on the neuronal cell adhesion molecule L1, did not interact with any NCAM isoform. Whereas p59(fyn) was constitutively associated with NCAM140, the focal adhesion kinase p125(fak), a nonreceptor tyrosine kinase known to mediate integrin-dependent signaling, became recruited to the NCAM140-p59(fyn) complex when cells were reacted with antibodies against the extracellular region of NCAM. Treatment of cells with a soluble NCAM fusion protein or with NCAM antibodies caused a rapid and transient increase in tyrosine phosphorylation of p125(fak) and p59(fyn). These results suggest that NCAM140 binding interactions at the cell surface induce the assembly of a molecular complex of NCAM140, p125(fak), and p59(fyn) and activate the catalytic function of these tyrosine kinases, initiating a signaling cascade that may modulate growth cone migration.  相似文献   

19.
We have investigated the signal transduction pathway of the G-protein mu-opioid receptor upstream of phospholipase D (PLD) and protein kinase C-epsilon (PKC-epsilon) activation in postmitotic E6CH chick embryo cortical neurons. The mu-opioid receptor and PLD-PKC-epsilon functional coupling depends on upstream tyrosine kinase activation. We now report that the mu-opioid agonists specifically stimulated tyrosine phosphorylation and activation of the focal adhesion kinase (FAK) in a time-dependent manner. We also demonstrate that met-enkephalin, a mu-opioid agonist in E6CH cultures, significantly increases tyrosine phosphorylation of another Src kinase substrate, the cytoskeletal protein cortactin. Tyrosine phosphorylation of cortactin led to drastic changes in subcellular localization, an estimated 2-fold enrichment in the cytosol. Similarly, opioids stimulated a sustained tyrosine phosphorylation of vinculin, a protein enriched in focal adhesion sites. These data provide novel evidence that opioid receptor intracellular signaling engages the specific activation of tyrosine kinase FAK and regulates the neuronal cytoskeleton during central nervous system morphogenesis.  相似文献   

20.
Overexpression and amplification of hepatocyte growth factor (HGF) receptor (Met) have been detected in many types of human cancers, suggesting a critical role for Met in growth and development of malignant cells. However, the molecular mechanism by which Met contributes to tumorigenesis is not well known. The tyrosine kinase c-Src has been implicated as a modulator of cell proliferation, spreading, and migration; these functions are also regulated by Met. To explore whether c-Src kinase is involved in HGF-induced cell growth, a mouse mammary carcinoma cell line (SP1) that co-expresses HGF and Met and a nonmalignant epithelial cell line (Mv1Lu) that expresses Met but not HGF were used. In this study, we have shown that c-Src kinase activity is constitutively elevated in SP1 cells and is induced in response to HGF in Mv1Lu cells. In addition, c-Src kinase associates with Met following stimulation with HGF. The enhanced activity of c-Src kinase also correlates with its ability to associate with Met. Expression of a dominant negative double mutant of c-Src (SRC-RF), lacking both kinase activity (K295R) and a regulatory tyrosine residue (Y527F), in SP1 cells significantly reduced c-Src kinase activity and strongly blocked HGF-induced motility and colony growth in soft agar. In contrast, expression of the dominant negative c-Src mutant had no effect on HGF-induced cell proliferation on plastic. Taken together, our data strongly suggest that HGF-induced association of c-Src with Met and c-Src activation play a critical role in HGF-induced cell motility and anchorage-independent growth of mammary carcinomas and further support the notion that the presence of paracrine and autocrine HGF loops contributes significantly to the transformed phenotype of carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号