首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
Electrical microstimulation (0.1-ms bipolar pulses at 500 Hz, current strength usually between 100 and 200 microA) was used to delineate saccade-related areas in the posterior parietal cortex of monkeys. Stimulation-induced saccades were found to be restricted to the lateral intraparietal area (area LIP) in the intraparietal sulcus (IPS) and a region on the medial aspect of the parietal lobe (area MP, medial parietal area), close to the caudal end of the cingulate sulcus, whereas stimulation of area 7a did not evoke eye movements. Two different types of evoked saccades were observed. Modified vector saccades, whose amplitude was modified by the position of the eyes at stimulation onset were the hallmark of sites in area LIP and area MP. The same sites were characterized by a propensity of single units active in the memory and presaccadic response segments of the memory saccade paradigm. Goal-directed saccades driving the eyes toward a circumscribed region relative to the head were largely restricted to a small strip of cortex on the lateral bank and the floor of the IPS (the intercalated zone), separating the representation of upward and downward directed saccades in LIP. Unlike stimulation in LIP or MP, stimulation in the intercalated zone gave rise to head, pinnae, facial, and shoulder movements accompanying the evoked saccades. We propose that the amplitude modification of vector saccades characterizing LIP and MP may reflect a spatially distributed head-centered coding scheme for saccades. On the other hand, the goal-directed saccades found in the intercalated zone could indicate the use of a spatially much more localized representation of desired location in head-centered space.  相似文献   

2.
The synaptic organization of the saccade-related neuronal circuit between the superior colliculus (SC) and the brainstem saccade generator was examined in an awake monkey using a saccadic, midflight electrical-stimulation method. When microstimulation (50-100 microA, single pulse) was applied to the SC during a saccade, a small, conjugate contraversive eye movement was evoked with latencies much shorter than those obtained by conventional stimulation. Our results may be explained by the tonic inhibition of premotor burst neurons (BNs) by omnipause neurons that ceases during saccades to allow BNs to burst. Thus, during saccades, signals originating from the SC can be transmitted to motoneurons and seen in the saccade trajectory. Based on this hypothesis, we estimated the number of synapses intervening between the SC and motoneurons by applying midflight stimulation to the SC, the BN area, and the abducens nucleus. Eye position signals were electronically differentiated to produce eye velocity to aid in detecting small changes. The mean latencies of the stimulus-evoked eye movements were: 7.9 +/- 1.0 ms (SD; ipsilateral eye) and 7.8 +/- 0.9 ms (SD; contralateral eye) for SC stimulation; 4.8 +/- 0.5 ms (SD; ipsilateral eye) and 5.1 +/- 0.7 ms (SD; contralateral eye) for BN stimulation; and 3.6 +/- 0.4 ms (SD; ipsilateral eye) and 5.2 +/- 0.8 ms (SD; contralateral eye) for abducens nucleus stimulation. The time difference between SC- and BN-evoked eye movements (about 3 ms) was consistent with a disynaptic connection from the SC to the premotor BNs.  相似文献   

3.
We explored the ventral part of the premotor cortex (PMV) with intracortical microstimulation (ICMS) while monkeys performed a visual fixation task, to see whether the PMV is involved in oculomotor control. ICMS evoked saccades from a small-restricted region in the PMV, without evoking movements in the limbs, neck, or body. We found the saccade-evoking site in the PMV in a total of three hemispheres in two monkeys. Quantitative analysis of the effects of eye position on saccades evoked by microstimulation of the PMV characterized the evoked saccades as goal directed. The nature of the saccades evoked in the PMV contrasted with the fixed vector nature of saccades evoked by ICMS of the frontal eye field. We also found that neurons in this restricted area of the PMV were active while the animals were performing a saccade task that required them to make saccades toward targets without arm movements. These data provide evidence for the presence of an oculomotor-specific subregion within the PMV. This subregion and the surrounding skeletomotor-representing regions of the PMV seem to coordinate oculomotor and skeletomotor control in performing goal-directed motor tasks.  相似文献   

4.
This report evaluates the performance of a biologically motivated neural network model of the primate superior colliculus (SC). Consistent with known anatomy and physiology, its major features include excitatory connections between its output elements, nigral gating mechanisms, and an eye displacement feedback of reticular origin to recalculate the metrics of saccades to memorized targets in retinotopic coordinates. Despite the fact that it makes no use of eye position or eye velocity information, the model can account for the accuracy of saccades in double step stimulation experiments. Further, the model accounts for the effects of focal SC lesions. Finally, it accounts for the properties of saccades evoked in response to the electrical stimulation of the SC. These include the approximate size constancy of evoked saccades despite increases of stimulus intensity, the fact that the size of evoked saccades depends on the time that has elapsed from a previous saccade, the fact that staircases of saccades are evoked in response to prolonged stimuli, and the fact that the size of saccades evoked in response to the simultaneous stimulation of two SC sites is the average of the saccades that are evoked when the two sites are separately stimulated.  相似文献   

5.
New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J. Neurophysiol. 80: 3373-3379, 1998. Electrical stimulation of the feline superior colliculus (SC) is known to evoke saccades whose size depends on the site stimulated (the "characteristic vector" of evoked saccades) and the initial position of the eyes. Similar stimuli were recently shown to produce slow drifts that are presumably caused by relatively direct projections of the SC onto extraocular motoneurons. Both slow and fast evoked eye movements are similarly affected by the initial position of the eyes, despite their dissimilar metrics, kinematics, and anatomic substrates. We tested the hypothesis that the position sensitivity of evoked saccades is due to the superposition of largely position-invariant saccades and position-dependent slow drifts. We show that such a mechanism can account for the fact that the position sensitivity of evoked saccades increases together with the size of their characteristic vector. Consistent with it, the position sensitivity of saccades drops considerably when the contribution of slow drifts is minimal as, for example, when there is no overlap between evoked saccades and short-duration trains of high-frequency stimuli.  相似文献   

6.
Recent neurophysiological studies of the saccadic ocular motor system have lent support to the hypothesis that this system uses a motor error signal in retinotopic coordinates to direct saccades to both visual and auditory targets. With visual targets, the coordinates of the sensory and motor error signals will be identical unless the eyes move between the time of target presentation and the time of saccade onset. However, targets from other modalities must undergo different sensory-motor transformations to access the same motor error map. Because auditory targets are initially localized in head-centered coordinates, analyzing the metrics of saccades from different starting positions allows a determination of whether the coordinates of the motor signals are those of the sensory system. We studied six human subjects who made saccades to visual or auditory targets from a central fixation point or from one at 10 degrees to the right or left of the midline of the head. Although the latencies of saccades to visual targets increased as stimulus eccentricity increased, the latencies of saccades to auditory targets decreased as stimulus eccentricity increased. The longest auditory latencies were for the smallest values of motor error (the difference between target position and fixation eye position) or desired saccade size, regardless of the position of the auditory target relative to the head or the amplitude of the executed saccade. Similarly, differences in initial eye position did not affect the accuracy of saccades of the same desired size. When saccadic error was plotted as a function of motor error, the curves obtained at the different fixation positions overlapped completely. Thus, saccadic programs in the central nervous system compensated for eye position regardless of the modality of the saccade target, supporting the hypothesis that the saccadic ocular motor system uses motor error signals to direct saccades to auditory targets.  相似文献   

7.
1. We studied the role of the superior colliculus (SC) in the control of visual fixation by recording from cells in the rostral pole of the SC in awake monkeys that were trained to perform fixation and saccade tasks. 2. We identified a subset of neurons in three monkeys that we refer to as fixation cells. These cells increased their tonic discharge rate when the monkey actively fixated a visible target spot to obtain a reward. This sustained activity persisted when the visual stimulation of the target spot was momentarily removed but the monkey was required to continue fixation. 3. The fixation cells were in the rostral pole of the SC. As the electrode descended through the SC, we encountered visual cells with foveal and parafoveal receptive fields most superficially, saccade-related burst cells with parafoveal movement fields below these visual cells, and fixation cells below the burst cells. From this sequence in depth, the fixation cells appeared to be centered in the deeper reaches of the intermediate layers, and this was confirmed by small marking lesions identified histologically. 4. During saccades, the tonically active fixation cells showed a pause in their rate of discharge. The duration of this pause was correlated to the duration of the saccade. Many cells did not decrease their discharge rate for small-amplitude contraversive saccades. 5. The saccade-related pause in fixation cell discharge always began before the onset of the saccade. The mean time from pause onset to saccade onset for contraversive saccades and ipsiversive saccades was 36.2 and 33.0 ms, respectively. Most fixation cells were reactivated before the end of contraversive saccades. The mean time from saccade terminatioN to pause end was -2.6 ms for contraversive saccades and 9.9 ms for ipsiversive saccades. The end of the saccade-related pause in fixation cell discharge was more tightly correlated to saccade termination, than pause onset was to saccade onset. 6. After the saccade-related pause in discharge, many fixation cells showed an increased discharge rate exceeding that before the pause. This increased postsaccadic discharge rate persisted for several hundred milliseconds. 7. The discharge rate of fixation cells was not consistently altered when the monkey actively fixated targets requiring different orbital positions. 8. Fixation cells discharged during smooth pursuit eye movements as they did during fixation. They maintained a steady tonic discharge during pursuit at different speeds and in different directions, provided the monkey looked at the moving target.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A target that is nearer to one eye than the other subtends a larger visual angle in the closer eye. Consequently, when making saccades between vertically separated targets that are closer to one eye, there is a vertical retinal disparity that must be overcome by a change in the relative alignment of the eyes. We recorded eye movements in three normal subjects and showed that in such viewing circumstances subjects made unequal vertical saccades that led to a rapid change (peak velocity up to 30 deg/sec) in vertical eye alignment. On average, 81% of the required change in alignment occurred within the saccade for downward movements and 47% for upward movements. Such unequal vertical saccades occurred independently of immediate disparity cues; saccades remained unequal when refixing to the remembered locations of the vertically-oriented targets, or even when the natural vertical disparity was nullified by a prism. On the other hand, when subjects wore the nullifying prism in front of the inferior visual field of the left eye for 8-20 hr, they showed a decrease in saccade disconjugacy (to 12-35% of the preadaptation value) to targets closer to the left eye in the inferior but not in the superior visual field. We suggest that the brain develops a three-dimensional map (horizontal, vertical, depth) for vertical saccade yoking, which is under adaptive control, and which is used to preprogram automatically the relative excursions of the eyes during vertical saccades as a function of the current and the desired point of regard.  相似文献   

9.
The intermediate layers of the monkey superior colliculus (SC) contain neurons the discharges of which are modulated by visual fixation and saccadic eye movements. Fixation neurons, located in the rostral pole of the SC, discharge action potentials tonically during visual fixation and pause for most saccades. Saccade neurons, located throughout the remainder of the intermediate layers of the SC, discharge action potentials for saccades to a restricted region of the visual field. We defined the fixation zone as that region of the rostral SC containing fixation neurons and the saccade zone as the remainder of the SC. It recently has been hypothesized that a network of local inhibitory interneurons may help shape the reciprocal discharge pattern of fixation and saccade neurons. To test this hypothesis, we combined extracellular recording and microstimulation techniques in awake monkeys trained to perform oculomotor paradigms that enabled us to classify collicular fixation and saccade neurons. Microstimulation was used to electrically activate the fixation and saccade zones of the ipsilateral and contralateral SC to test for inhibitory and excitatory inputs onto fixation and saccade neurons. Saccade neurons were inhibited at short latencies following electrical stimulation of either the ipsilateral (1-5 ms) or contralateral (2-7 ms) fixation or saccade zones. Fixation neurons were inhibited 1-4 ms after electrical stimulation of the ipsilateral saccade zone. Stimulation of the contralateral saccade zone led to much weaker inhibition of fixation neurons. Stimulation of the contralateral fixation zone led to short-latency (1-2 ms) excitation of fixation neurons. Only a small percentage of saccade and fixation neurons were activated by the electrical stimulation (latency: 0.5-2.0 ms). These responses were confirmed as either orthodromic or antidromic responses using collision testing. The results suggest that a local network of inhibitory interneurons may help shape not only the reciprocal discharge pattern of fixation and saccade neurons but also permit lateral interactions between all regions of the ipsilateral and contralateral SC. These interactions therefore may be critical for maintaining stable visual fixation, suppressing unwanted saccades, and initiating saccadic eye movements to targets of interest.  相似文献   

10.
The latency of saccadic eye movements evoked by the presentation of auditory and visual targets was studied while starting eye position was either 0 or 20 deg right, or 20 deg left. The results show that for any starting position the latency of visually elicited saccades increases with target eccentricity with respect to the eyes. For auditory elicited saccades and for any starting position the latency decreases with target eccentricity with respect to the eyes. Therefore auditory latency depends on a retinotopic motor error, as in the case of visual target presentation.  相似文献   

11.
The implication of the caudal part of the fastigial nucleus (cFN) in the control of saccadic shifts of the visual axis is now well established. In contrast a possible involvement of the rostral part of the fastigial nuceus (rFN) remains unknown. In the current study we investigated in the head-unrestrained cat the contribution of the rFN to the control of visually triggered saccadic gaze shifts by measuring the deficits after unilateral muscimol injection in the rFN. A typical gaze dysmetria was observed: gaze saccades directed toward the inactivated side were hypermetric, whereas those with an opposite direction were hypometric. For both movement directions, gaze dysmetria was proportional to target retinal eccentricity and could be described as a modified gain in the translation of visual signals into eye and head motor commands. Correction saccades were triggered when the target remained visible and reduced the gaze fixation error to 2.7 +/- 1.3 degrees (mean +/- SD) on average. The hypermetria of ipsiversive gaze shifts resulted predominantly from a hypermetric response of the eyes, whereas the hypometria of contraversive gaze shifts resulted from hypometric responses of both eye and head. However, even in this latter case, the eye saccade was more affected than the motion of the head. As a consequence, for both directions of gaze shift the relative contributions of the eye and head to the overall gaze displacement were altered by muscimol injection. This was revealed by a decreased contribution of the head for ipsiversive gaze shifts and an increased head contribution for contraversive movements. These modifications were associated with slight changes in the delay between eye and head movement onsets. Inactivation of the rFN also affected the initiation of eye and head movements. Indeed, the latency of ipsiversive gaze and head movements decreased to 88 and 92% of normal, respectively, whereas the latency of contraversive ones increased to 149 and 145%. The deficits induced by rFN inactivation were then compared with those obtained after muscimol injection in the cFN of the same animals. Several deficits differed according to the site of injection within the fastigial nucleus (tonic orbital eye rotation, hypermetria of ipsiversive gaze shifts and fixation offset, relationship between dysmetria and latency of contraversive gaze shifts, postural deficit). In conclusion, the present study demonstrates that the rFN is involved in the initiation and the control of combined eye-head gaze shifts. In addition our findings support a functional distinction between the rFN and cFN for the control of orienting gaze shifts. This distinction is discussed with respect to the segregated fastigiofugal projections arising from the rFN and cFN.  相似文献   

12.
PURPOSE: This study in human subjects investigated whether or not the saccade system can monitor smooth changes of the eye position in total darkness. METHODS: The authors studied the properties of memory-guided saccades toward targets flashed during pursuit eye movements (target velocities of 15 degrees/s, 30 degrees/s, and 45 degrees/s) in four normal human subjects. Subjects were instructed to execute memory-guided saccades toward the position of the flashed target in total darkness when the pursuit target was extinguished. RESULTS: The vector of the saccade was more highly correlated with the vector of "spatial error" (the vector from the position of the eye at the time of the saccade to the position of the flashed target in space) than with the vector of "retinal error" (the vector from the position of the eye at the time of the presentation of the flashed target to the position of the flashed target). The amplitude and direction errors of memory-guided saccades were correlated with the amplitude of the retinal error but not with amplitude of eye deviation after the presentation of the flashed target. Pursuit velocity did not affect the error of the saccade. CONCLUSIONS: These findings suggest that the saccade system can monitor smooth changes of the eye position in total darkness, regardless of the velocity of pursuit, and that the accuracy of memory-guided saccades is dependent only on the amplitude of the retinal error.  相似文献   

13.
We measured the eye movements of three sisters with Niemann-Pick type C disease who had a selective defect of vertical saccades, which were slow and hypometric. Horizontal saccades, and horizontal and vertical pursuit and vestibular eye movements were similar to control subjects. The initial movement of oblique saccades was mainly horizontal and most of the vertical component occurred after the horizontal component ended; this resulted in strongly curved trajectories. After completion of the horizontal component of an oblique saccade, the eyes oscillated horizontally at 10-20 Hz until the vertical component ended. These findings are best explained by models that incorporate separate feedback loops for horizontal and vertical burst neurons, and in which the disease selectively affects vertical burst neurons.  相似文献   

14.
Step-ramp target motion evokes a characteristic sequence of presaccadic smooth eye movement in the direction of the target ramp, catch-up targets to bring eye position close to the position of the moving target, and postsaccadic eye velocities that nearly match target velocity. I have analyzed this sequence of eye movements in monkeys to reveal a strong postsaccadic enhancement of pursuit eye velocity and to document the conditions that lead to that enhancement. Smooth eye velocity was measured in the last 10 ms before and the first 10 ms after the first saccade evoked by step-ramp target motion. Plots of eye velocity as a function of time after the onset of the target ramp revealed that eye velocity at a given time was much higher if measured after versus before the saccade. Postsaccadic enhancement of pursuit was recorded consistently when the target stepped 3 degrees eccentric on the horizontal axis and moved upward, downward, or away from the position of fixation. To determine whether postsaccadic enhancement of pursuit was invoked by smear of the visual scene during a saccade, I recorded the effect of simulated saccades on the presaccadic eye velocity for step-ramp target motion. The 3 degrees simulated saccade, which consisted of motion of a textured background at 150 degrees/s for 20 ms, failed to cause any enhancement of presaccadic eye velocity. By using a strategically selected set of oblique target steps with horizontal ramp target motion, I found clear enhancement for saccades in all directions, even those that were orthogonal to target motion. When the size of the target step was varied by up to 15 degrees along the horizontal meridian, postsaccadic eye velocity did not depend strongly either on the initial target position or on whether the target moved toward or away from the position of fixation. In contrast, earlier studies and data in this paper show that presaccadic eye velocity is much stronger when the target is close to the center of the visual field and when the target moves toward versus away from the position of fixation. I suggest that postsaccadic enhancement of pursuit reflects activation, by saccades, of a switch that regulates the strength of transmission through the visual-motor pathways for pursuit. Targets can cause strong visual motion signals but still evoke low presaccadic eye velocities if they are ineffective at activating the pursuit system.  相似文献   

15.
Previous studies have shown that accurate saccades can be generated, in the dark, that compensate for movements of the visual axis that result from movements of either the eyes alone or the head alone that intervene between target presentation and saccade onset. We have carried out experiments with human subjects to test whether gaze saccades (gaze = eye-in-space = eye-in-head + head-in-space) can be generated that compensate for smooth pursuit movements of gaze that intervene between target onset and gaze-saccade onset. In both head-unrestrained (head-free) and -restrained (head-fixed) conditions, subjects were asked to make gaze shifts, in the dark, to the remembered location of a briefly flashed target. On most trials, during the memory period, the subjects carried out intervening head-free gaze pursuit or head-fixed ocular pursuit along the horizontal meridian. On the remaining (control) trials, subjects did not carry out intervening pursuit movements during the memory period; this was the classical memory-guided saccade task. We found that the subjects accurately compensated for intervening movements of the visual axis in both the head-free and head-fixed conditions. We conclude that the human gaze-motor system is able to monitor on-line changes in gaze position and add them to initial retinal error, to program spatially accurate gaze saccades.  相似文献   

16.
Primary saccades to remembered targets are generally not precise, but rather undershoot target position. The major source of this saccadic undershoot may be (a) a memory-related process or (b) a poor spatial resolution in those processes which transfer the retinotopic target information into an intermediate memory-linked representation of space. The aim of this study was to investigate whether distortions of eye positions in the antisaccade task, which are characterized by inherent co-ordinate transformation processes, may completely account for the spatial inaccuracies of memory-guided antisaccades. The results show that the spatial inaccuracy of primary and secondary eye movements in the visually guided antisaccade task was comparable to that in the memory-guided antisaccade task. In both conditions, the direction error component was less dysmetric than the amplitude error component. Secondary eye movements were significantly corrective. This increase of eye position accuracy was achieved by reducing the amplitude error only. It is concluded from this study that at least some of the distortion of memory-guided saccades is due to inaccuracies in the sensorimotor co-ordinate transformations.  相似文献   

17.
1. We previously described discharge properties of cerebellar output cells in the fastigial nucleus during ipsilateral and contralateral saccades. Fastigial cells exhibited unique responses depending on the direction of saccades and were involved in execution of accurate targeting saccades. Purkinje cells in the oculomotor vermis (lobules VIc and VII) are thought to modulate these discharges of fastigial cells. In this study we reexamine discharge properties of Purkinje cells on the basis of this hypothesis. 2. Initially we physiologically identified the right and left sides of the oculomotor vermis. Saccade-related discharges of 79 Purkinje cells were recorded from both sides of the vermis during visually guided saccades toward the sides ipsilateral and contralateral to the recording side in two trained macaque monkeys. To clarify the correlation of Purkinje cell discharge with burst activities in the fastigial nucleus during saccadic eye movements, we analyzed our data by employing methods used in the study of fastigial neurons. 3. Among the 79 cells, 56 (71%) showed burst discharges during saccades (saccadic burst cells). Of the 56 cells, 29 exhibited a peak of burst discharges in both the contralateral and ipsilateral directions (bidirectional cells). The remaining 27 saccadic burst cells showed a peak of burst discharges during either contralateral or ipsilateral saccades (unidirectional cells). Among the 79 cells, 14 (18%) exhibited a pause of discharges during contralateral saccades (pause cells). Among the 79 cells, 9 (11%) showed burst discharge during contralateral saccades followed by tonic discharge that was correlated with eye position (burst tonic cells). 4. The timing of bursts in bidirectional cells with respect to saccade onset was dependent on the direction of saccade. During ipsilateral saccades, Purkinje cells exhibited a long lead burst that built up gradually, peaked near the onset of the saccade, and terminated sharply near midsaccade. The mean lead time relative to saccade onset was 29.3 +/- 24.5 (SD) ms. During contralateral saccades, Purkinje cells exhibited a short lead/late burst that built up sharply, peaked near midsaccade, and terminated gradually after the end of the saccade. The mean lead time relative to saccade onset was 10.7 +/- 20.8 ms. The burst onset time during contralateral saccades and the burst offset time during ipsilateral saccades preceded the saccade offset time by about the same interval regardless of the saccade amplitude. 5. In pause cells the pause preceded saccade onset by 17.5 +/- 10.6 ms. The duration of the pause was not correlated with the duration of saccades. There was little trial-to-trial variability in the onset time of the pause with respect to the onset of saccades, whereas there was large trial-to-trial variability in the offset time of the pause with respect to the offset of saccades. In addition, the mean onset time of the pause for each cell had a relatively narrow distribution. 6. The burst lead time of burst tonic cells relative to saccade onset was 9.5 +/- 3.9 ms. The tonic discharge rate of burst tonic cells was a nonlinear function of eye position. The regression of each cell was fit to two lines. The regression coefficient ranged from 0.95 to 0.99 (mean = 0.97). 7. Axons of Purkinje cells in the oculomotor vermis are thought to project exclusively to saccadic burst cells in the fastigial oculomotor region (FOR), which is located in the caudal portion of the fastigial nucleus. Our previous studies indicated that FOR cells provide temporal signals for controlling targeting saccades. The present results suggest that Purkinje cells in the oculomotor vermis modify the temporal signals of FOR cells for saccades in different directions and amplitudes. The modification of FOR cell activity by Purkinje cells is thought to be essential for the function of the cerebellum in the control of saccadic eye movements.  相似文献   

18.
The amplitude of open-loop pointing movements to step displacements in target position is influenced by the amplitude of simultaneously produced saccadic eye movements. The time course over which this occurs was addressed in the present study. Analysis of the pointing kinematics showed that saccade amplitude had its effect only during the initial acceleration of the hand. Moreover, the magnitude of the initial acceleration was correlated with the difference in the onset times of the eye and hand movements: the closer in time the saccadic and pointing responses were initiated the larger the initial hand acceleration. Taken together, these results demonstrate that saccades influence the kinematics of simultaneously produced limb movements but only over a limited time frame.  相似文献   

19.
Effects of saccades on individual neurons in the cat lateral geniculate nucleus (LGN) were examined under two conditions: during spontaneous saccades in the dark and during stimulation by large, uniform flashes delivered at various times during and after rewarded saccades made to small visual targets. In the dark condition, a suppression of activity began 200-300 ms before saccade start, peaked approximately 100 ms before saccade start, and smoothly reversed to a facilitation of activity by saccade end. The facilitation peaked 70-130 ms after saccade end and decayed during the next several hundred milliseconds. The latency of the facilitation was related inversely to saccade velocity, reaching a minimum for saccades with peak velocity >70-80 degrees /s. Effects of saccades on visually evoked activity were remarkably similar: a facilitation began at saccade end and peaked 50-100 ms later. When matched for saccade velocity, the time courses and magnitudes of postsaccadic facilitation for activity in the dark and during visual stimulation were identical. The presaccadic suppression observed in the dark condition was similar for X and Y cells, whereas the postsaccadic facilitation was substantially stronger for X cells, both in the dark and for visually evoked responses. This saccade-related regulation of geniculate transmission appears to be independent of the conditions under which the saccade is evoked or the state of retinal input to the LGN. The change in activity from presaccadic suppression to postsaccadic facilitation amounted to an increase in gain of geniculate transmission of approximately 30%. This may promote rapid central registration of visual inputs by increasing the temporal contrast between activity evoked by an image near the end of a fixation and that evoked by the image immediately after a saccade.  相似文献   

20.
We examined two ways in which the neural control system for eye-head saccades constrains the motion of the eye in the head. The first constraint involves Listing's law, which holds ocular torsion at zero during head-fixed saccades. During eye-head saccades, does this law govern the eye's motion in space or in the head? Our subjects, instructed to saccade between space-fixed targets with the head held still in different positions, systematically violated Listing's law of the eye in space in a way that approximately, but not perfectly, preserved Listing's law of the eye in head. This finding implies that the brain does not compute desired eye position based on the desired gaze direction alone but also considers head position. The second constraint we studied was saturation, the process where desired-eye-position commands in the brain are "clipped" to keep them within an effective oculomotor range (EOMR), which is smaller than the mechanical range of eye motion. We studied the adaptability of the EOMR by asking subjects to make head-only saccades. As predicted by current eye-head models, subjects failed to hold their eyes still in their orbits. Unexpectedly, though, the range of eye-in-head motion in the horizontal-vertical plane was on average 31% smaller in area than during normal eye-head saccades, suggesting that the EOMR had been reduced by effort of will. Larger reductions were possible with altered visual input: when subjects donned pinhole glasses, the EOMR immediately shrank by 80%. But even with its reduced EOMR, the eye still moved into the "blind" region beyond the pinhole aperture during eye-head saccades. Then, as the head movement brought the saccade target toward the pinhole, the eyes reversed their motion, anticipating or roughly matching the target's motion even though it was still outside the pinhole and therefore invisible. This finding shows that the backward rotation of the eye is timed by internal computations, not by vision. When subjects wore slit glasses, their EOMRs shrank mostly in the direction perpendicular to the slit, showing that altered vision can change the shape as well as the size of the EOMR. A recent, three-dimensional model of eye-head coordination can explain all these findings if we add to it a mechanism for adjusting the EOMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号