首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper extends earlier work of the authors to the multipath fading channel. For a normalized Doppler spread of fDT=0.005 we show that a reduced state sequence estimation reduced-complexity receiver with Ks=2 users per state and a processing gain of N s=127 performs only 0.5 dB worse than the single-user receiver for a bit-error rate of 10-4  相似文献   

2.
A blind asynchronous single-user code-reuse direct sequence code division multiple access (CDMA) array receiver is proposed for the uplink. By assigning each short PN-code more than once, code reuse allows the number of active users to be increased beyond the spreading gain. The proposed receiver is based on a blind single-code multipath joint space-time channel estimation technique that utilizes the concept of the spatio-temporal array manifold, in conjunction with a novel preprocessor, to deal with the multipath problem. From the estimated space-time channel parameters of a particular active code, the subset of parameters of a specific co-code user is then identified, and a single-user receiving weight vector is finally formed. The proposed approach is a subspace type method, and therefore, it is "near-far" resistant. Furthermore, in contrast to existing receivers such as the space-time decorrelating detector, the proposed receiver weight vector is tolerant to partial channel estimation errors and the incomplete estimation of channel parameters. The theoretical framework is supported by computer simulation studies.  相似文献   

3.
The performance of antenna diversity coherent and differentially coherent linear multiuser receivers is analyzed in frequency-nonselective Rayleigh fading CDMA channels with memory. The estimates of the complex fading processes are utilized for maximal-ratio combining and carrier recovery of the coherent multiuser receiver. To analyze the impact of channel estimation errors on the receiver performance, error probability is assessed directly in terms of the fading rate and the number of active users, showing the penalty imposed by imperfect channel estimation as well as the fading-induced error probability floor. The impact of fading dynamics on the differentially coherent decorrelating receiver with equal-gain combining is quantified. While performance of multiuser receivers at lower SNR is determined by both the fading dynamics and the number of active CDMA users, performance at higher SNR is given by an error probability floor which is due to fading only and has the same value as in a single-user case. The comparison of the two receiver structures indicates that the coherent decorrelating receiver with diversity reception may be preferable to the differentially coherent one in nonselective fading CDMA channels with memory.  相似文献   

4.
A direct sequence (DS) spread spectrum code division multiple access (CDMA) communication system is considered where several users transmit data symbols over different multipath channels. The main objective of this work is the proposal of a sequential algorithm for joint parameter estimation and multiuser data detection. The computationally prohibitive maximization of the log-likelihood function is replaced by a sequential scheme using the multistage detector for recovering the data symbols and the expectation-maximization algorithm for estimating the channel parameters. The performance of the resulting multiuser receiver is evaluated via Monte Carlo simulations using both synthetic as well as measured channel impulse responses. A comparison of the performance with analytical expressions for the single-user single-path case shows that the proposed system is capable of eliminating the near-far effect existing in conventional DS/CDMA systems.  相似文献   

5.
We discuss a synchronous direct-sequence code division multiple-access (DS-CDMA) system based on block spreading in the presence of frequency-selective fading. Note that block spreading, which is also known as chip interleaving, refers to a spreading of a data block sequence, which is obtained by dividing a data symbol sequence into consecutive blocks. For such a system, we develop a simple new receiver that completely removes the multiuser interference (MUI) without using any channel information. The MUI-free operation is obtained by the use of a shift-orthogonal set of code sequences on which this receiver is based. Within the framework of the MUI-free receiver, we further present a subspace deterministic blind single-user channel estimation algorithm. As a benchmark for the MUI-free receiver and the corresponding subspace deterministic blind single-user channel estimation algorithm, we consider the linear multiuser equalizer and the corresponding subspace deterministic blind multiuser channel estimation algorithm developed by Liu and Xu (1996) for a standard synchronous DS-CDMA system in the presence of frequency-selective fading. We show that the complexity of the MUI-free receiver using the corresponding subspace deterministic blind single-user channel estimation algorithm is much smaller than the complexity of the linear multiuser equalizer using the corresponding subspace deterministic blind multiuser channel estimation algorithm. We further show that the performance of the MUI-free receiver is comparable with the performance of the linear multiuser equalizer. This is for the case in which the channels are known as well as for the case in which the channels are estimated with the corresponding subspace deterministic blind channel estimation algorithm  相似文献   

6.
本文考虑同步码分多址通信系统在单频点阻塞干扰环境中,一种抗多址干扰单用户检测接收机(I.Acax等人1994年提出)的误码率特性.结果表明,这种接收机(A-T接收机)在系统用户数很大时仍具有良好的抗单频点阻塞干扰性能。  相似文献   

7.
Motivated by the fact that time delays in a practical direct-sequence code-division multiple-access (DS-CDMA) system can never be perfectly estimated, an improved minimum-mean squared-error (MMSE)-based receiver is proposed and analyzed. Via the simple assumption of a probability distribution for the delay estimation errors, the proposed receiver can achieve a performance superior to that of the conventional MMSE (CMMSE) receiver. The performances of this improved receiver and the CMMSE receiver are compared in terms of the mean squared error (MSE), probability of error, and asymptotic multiuser efficiency (AME). As the original definition of AME does not consider mismatched channels, the behavior of three single-user receivers bearing imperfect delay estimation is also investigated. These single-user receivers are employed to define a more appropriate AME. Finally, an efficient update mechanism to accommodate dynamic channel statistics, and thus practical implementation, is proposed  相似文献   

8.
The performance of an array of antennas combined with a RAKE receiver at the base station of a wideband code division multiple access system with quaternary phase shift keying modulation is investigated for single-user reception. This receiver structure is also known as a multidimensional RAKE receiver. Expressions for the interference correlation matrix are derived, and subsequently, an analysis of the error probability is provided. With regard to antenna weights, the optimum combining linear receiver, which takes into account the spatial distribution of all the users in the system, is compared with the suboptimum combining receiver (SOC), which exploits knowledge of the desired user array vector only. It is shown how the two receivers, ideal in the sense that perfect channel estimation is assumed, achieve very similar performances under realistic conditions. Consequently, the investigated pilot assisted combining receiver, which estimates the channel based on limited overhead, calculates weights according to the SOC strategy by a very simple algorithm  相似文献   

9.
A practically interesting approach for iterative channel estimation, multiuser detection, and single-user decoding based on maximum a posteriori symbol-by-symbol estimation for direct sequence/code-division multiple-access (DS-CDMA) is proposed. The receiver relies on the output of a bank of matched filters for each user and each path, and combines interference cancellation with iterated soft-decision feedback to improve channel estimation accuracy and data symbol reliability in course of a few iterations. We show that in this way, near single-user channel phase and amplitude estimation accuracy is achieved for frequency-selective fading channels, even in highly loaded systems, and illustrate that reliable data symbol estimation can be performed.  相似文献   

10.
Consideration is given to an asynchronous code-division multiple-access environment in which receiver has knowledge of the signature waveforms of all the users. Under the assumption of white Gaussian background noise, the authors compare detectors by their worst case bit error rate in a near-far environment with low background noise, where the received energies of the users are unknown to the receiver and are not necessarily similar. Conventional single-user detection in a multiuser channel is not near-far resistant, and the substantially higher performance of the optimum multiuser detector requires exponential complexity in the number of users. The authors explore suboptimal demodulation schemes which exhibit a low order of complexity while not exhibiting the impairment of the conventional single-user detector. It is shown that there exists a linear detector whose bit-error-rate is independent of the energy of the interfering users. It is also shown that the near-far resistance of optimum multiuser detection can be achieved by a linear detector. The optimum linear detector for worst-case energies is found, along with existence conditions, which are always satisfied in the models of practical interest  相似文献   

11.
The optimal multiuser sequence estimator is formulated for an asynchronous direct-sequence code-division multiple-access (DS-CDMA) system where each user employs convolutional coding to improve its performance on a nondispersive additive white Gaussian noise (AWGN) channel. It is shown that the decoder may be implemented efficiently using a Viterbi algorithm which operates on a time-varying trellis with a number of states which is exponential in the product of the number of users in the system and the constraint length of the codes used (for the rate 1/2 code case). The asymptotic efficiency of this receiver relative to an uncoded coherent binary phase shift keying (BPSK) receiver (termed asymptotic multiuser coding gain, or AMCG) is then upper and lower bounded. The AMCG parameter unifies the asymptotic coding gain parameter and the asymptotic multiuser efficiency parameter which are traditional figure of merit parameters for single-user coded systems and multiuser uncoded systems, respectively. Finally, some simulations are presented to illustrate the performance of the maximum likelihood sequence estimator (MLSE) at moderate and low bit error rates  相似文献   

12.
We consider joint channel estimation and data detection in uplink asynchronous code-division multiple-access systems employing aperiodic (long) spreading sequences in the presence of unknown multipath fading. Since maximum-likelihood (ML) sequence estimation is too complex to perform, multiuser receivers are proposed based on the sequential expectation-maximization (EM) algorithm. With the prior knowledge of only the signature waveforms, the delays and the second-order statistics of the fading channel, the receivers sequentially estimate the channel using the sequential EM algorithm. Moreover, the snapshot estimates of each path are tracked by linear minimum mean-squared error filters. The user data are detected by a ML sequence detector, given the channel estimates. The proposed receivers that use the exact expressions have a computational complexity O(2/sup K/) per bit, where K is the number of users. Using the EM algorithm, we derive low-complexity approximations which have a computational complexity of O(K/sup 2/) per bit. Simulation results demonstrate that the proposed receivers offer substantial performance gains over conventional pilot-symbol-assisted techniques and achieve a performance close to the known channel bounds. Furthermore, the proposed receivers even outperform the single-user RAKE receiver with Nyquist pilot-insertion rate in a single-user environment.  相似文献   

13.
This paper deals with the derivation and optimization of an iterative receiver architecture performing joint multiuser decoding and channel estimation. We consider an asynchronous multirate convolutional coded DS-CDMA system that communicates over quasi-static flat Rayleigh fading channels. The proposed receiver is derived within the space-alternating generalized expectation-maximization (SAGE) framework in connection with the noise-splitting approach. The used theoretical framework guarantees convergence of the receiver, as opposed to many other iterative receiver structures. Furthermore, the noise-splitting approach provides a set of noise-weighting coefficients that can be optimized under weak constraints. The inputs to the single-user decoders are linear combinations of two kinds of soft values with weights determined by the noise-weighting coefficients. These two kinds of soft values can be interpreted as a priori information and extrinsic information, respectively, if the channels are known. In the case of unknown channels, they are asymptotically a priori and asymptotically extrinsic, i.e., they become a priori and extrinsic when the length of the observed frame tends to infinity. In most cases, the optimum coefficients lead to extrinsic or asymptotically extrinsic values fed to the input of the single-user decoders. Monte Carlo simulations show that the proposed receiver is resistant to channel estimation errors and supports high system loads.  相似文献   

14.
This paper examines the achievable capacity of a direct-sequence spread-spectrum multiple-access system based on an adaptive minimum mean-square-error (MMSE), single-user receiver over a Gaussian channel. The effect of using both trellis and convolutional codes of varying rates and complexity is investigated in relation to the effect on the maximum number of users and the achievable bit-error rate for a given number of users. A system based on a matched filter receiver is presented for the purposes of comparison. It has been found that, over the band-limited channel considered, the use of convolutional coding reduces the total system capacity for the high efficiency MMSE receiver while still providing a coding gain for a small numbers of users. The use of trellis codes however leads to increased system capacity  相似文献   

15.
The performance of a successive concatenated cancellation scheme for code-division multiple-access (CDMA) uplink transmission in cellular mobile radio is presented. Both serial and parallel cancellation stages are employed. The serial cancellation stage is first used to obtain initial data estimates followed by the parallel cancellation stages to enhance the accuracy of the estimates. The performance of this scheme is evaluated via analysis and simulation. In our analysis, we develop a model to consider the impact of wrongly estimating the phase and amplitude of the channel impulse response on the successive concatenated cancellation scheme. Analysis and simulation results in flat Rayleigh fading asynchronous channels with both perfect and nonperfect channel estimation and with perfect ranking confirms the accuracy of our analytical model as well as the significant improvement in performance compared to the conventional single-user matched filter (MF) detection and the stand-alone parallel cancellation schemes. Analytical results also show that the concatenated scheme has the potential to reach the single-user performance bound for a wide range of user base size, up to K=120 users, with a processing gain of 127 using one serial and three parallel cancellation stages. Finally, we propose a method whereby the receiver adapts with the number of users in order to retain the bit error ratio (BER) performance while decreasing the processing delay  相似文献   

16.
This paper introduces the problem of noncoherent detection for nonorthogonal multipulse modulation in the context of the synchronous multiuser Gaussian channel. Each user sends an M-ary information symbol by transmitting one of M possibly nonorthogonal waveforms. Furthermore, the M signals of one user are allowed to be correlated with the signals of all other users. A key idea proposed here is that of a noncoherent decorrelative receiver front end. Like its counterpart in single-pulse modulation, this front end eliminates multiuser interference. It therefore reduces the multiuser detection problem into decoupled single-user problems over equivalent noise-enhanced single-user channels. Each equivalent single-user channel is rather general and can be described as one where the waveforms employed are not only correlated, but are also of unequal energies. Several new results pertaining to the design and analysis of optimum and suboptimum noncoherent detectors for this single-user channel are obtained. In the multiuser channel, these detectors constitute the post-decorrelative processing units for each user  相似文献   

17.
Blind and semi-blind equalization for generalized space-time block codes   总被引:7,自引:0,他引:7  
This paper presents a general framework for space-time codes (STCs) that encompasses a number of previously proposed STC schemes as special cases. The STCs considered are block codes that employ arbitrary redundant linear precoding of a given data sequence together with embedded training symbols, if any. The redundancy introduced by the linear precoding imposes structure on the received data that under certain conditions can be exploited for blind or semi-blind estimation of the transmitted sequence, a linear receiver that recovers the sequence, or both simultaneously. Algorithms based on this observation are developed for the single-user flat-fading case and then extended to handle multiple users, frequency-selective fading, as well as situations where the channel is rank deficient, or there are fewer receive than transmit antennas.  相似文献   

18.
We consider a coded multiple-input multiple-output (MIMO) DS-CDMA system using layered space-time transmission in multipath wireless channels, where space-time signals from multiple antennas of multiple users propagate through rich scattering multipath fading. We propose a receiver employing iterative joint detection and decoding with a reduced-complexity detector using linear minimum mean squared error filtering with a priori information and parallel soft-input soft-output (SISO) decoders. Computer simulation results show that the proposed receiver for multi-user MIMO transmission provides high-spectral efficiency and performance approaching to single-user bound. Furthermore, the reduced-complexity receiver outperforms an iterative soft decision-directed maximal ratio combining (DD-MRC) receiver, RAKE receiver as well as a conventional non-iterative receiver.  相似文献   

19.
Consider M independent users, each user having his own transmit antenna, that transmit simultaneously to a receiver equipped with N antennas through a Rayleigh block-fading channel having a coherence interval of T symbols, with no channel state information (CSI) available to either the transmitters or to the receiver. The total transmitted power is independent of the number of users. For a given coherence time T, we wish to identify the best multiaccess strategy that maximizes the total throughput. If perfect CSI were available to the receiver, it is known that the total capacity would increase monotonically with the number of users. If the CSI is available to both the receiver and to all transmitters, the throughput maximizing strategy implies for N=1 that only the single user who enjoys the best channel condition transmits. In the absence of CSI one is forced to a radically different conclusion. In particular, we show that if the propagation coefficients take on new independent values for every symbol (e.g., T=1) then the total capacity for any M > 1 users is equal to the capacity for M=1 user, in which case time division multiple access (TDMA) is an optimal scheme for handling multiple users. This result follows directly from a recent treatment of the single-user multiple antenna block-fading channel. Again, motivated by the single-user results, one is lead to the following conjecture for the multiple-user case: for any T > 1, the maximum total capacity can be achieved by no more than M = T users. The conjecture is supported by establishing the asymptotic result that, for a fixed N and a constant M/T for large T, the total capacity is maximized when M/T→0, which yields a total capacity per symbol of N log(1 + ρ), where ρ is the expected signal-to-noise ratio (SNR) at the receiver. We further support the conjecture by examining the asymptotic behavior with large to for fixed M, T, and N ⩽ T  相似文献   

20.
The capacity of the randomly spread synchronous code-division multiple-access (CDMA) channel subject to frequency-flat fading is studied in the wide-band limit of large number of users. We find the spectral efficiency as a function of the number of users per chip, the distribution of the flat fading, and the signal-to-noise ratio (SNR), for the optimum receiver as well as linear receivers (single-user matched filter, decorrelator, and minimum mean-square error (MMSE)). The potential improvements due to both decentralized transmitter power control and multi-antenna receivers are also analyzed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号