首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new layered magnesium zinc phosphate hydrate, MgZn(HPO4)2·H2O, with a zinc phosphate framework isostructural with the one of Na2Zn(HPO4)2·4H2O, was prepared by the direct ambient pressure and temperature reaction between zinc 2,4-pentanedionate, phosphoric acid and hexahydrated magnesium chloride. The as-prepared sample is monoclinic (a = 8.780(7) Å, b = 13.240(7) Å, c = 11.123(0) Å and β = 116.21(2)°). The prepared solid undergoes two thermal transformations when it is heated from 110 to 600 °C. The first transformation is due to the release of intercalated water molecules and the second one is due to the HPO42− → P2O74− transition.  相似文献   

2.
A lithium bismuth phosphate, Li2Bi14.67(PO4)6O14, has been synthesized for the first time by the solid-state method. The crystal structure was determined by single crystal X-ray diffraction at 150 K. Li2Bi14.67(PO4)6O14 crystallizes in the monoclinic system C2/c (No. 15), with a = 30.8189(4) Å, b = 5.2691(3) Å, c = 24.5302(3) Å, β = 122.84(2)°, V = 3346.81(1) Å3 and Z = 2. The structure along the b axis consists of layers of [Bi2O2] units as the basic building block. These are separated by isolated PO4 and LiO4 tetrahedra. The oxygen co-ordination around two of the phosphorus atoms is disordered. Solid-state 7Li NMR studies confirm the presence of lithium in the structure. The material shows ionic conductivity of the order of 10−5 S cm−1 at 600 °C.  相似文献   

3.
We describe transformations of the Dion-Jacobson (D-J) phases, KLaNb2O7 and RbBiNb2O7, to the Aurivillius (A) phases, (PbBiO2)LaNb2O7 (1) and (PbBiO2)BiNb2O7 (2), in a metathesis reaction with PbBiO2Cl. Oxide 1 adopts centrosymmetric tetragonal structure (a = 3.905(1) Å, c = 25.66(1) Å), whereas oxide 2 crystallizes in a noncentrosymmetric orthorhombic (A21am) (a = 5.489(1) Å, b = 5.496(2) Å, c = 25.53(1) Å) structure. Oxide 2 shows a distinct SHG response towards 1064 nm laser radiation. The role of La3+ versus Bi3+ in the perovskite slabs for the occurrence of noncentrosymmetric structure/ferroic property in these materials is pointed out.  相似文献   

4.
A new iron(III) phosphate Na3Fe3(PO4)4 has been synthesized and characterized. It decomposes before melting at 860°C into FePO4 and Na3Fe2(PO4)3. The structure of the compound was determined by single-crystal X-ray diffraction. The unit cell is monoclinic with the following parameters: a=19.601(8) Å, b=6.387(1) Å, c=10.575(6) Å and β=91.81(4)°; Z=4; space group: C2/c. Na3Fe3(PO4)4 exhibits a layered structure involving corner-linkage between FeO6 octahedra, and corner- and edge-sharing between FeO6 octahedra and PO4 tetrahedra. The Na+ cations occupying the interlayer space are six- and seven-fold coordinated by oxygen atoms. The relationship between the structure of Na3Fe3(PO4)4 and the previous reported hydrate K3Fe3(PO4)4·H2O will be discussed.  相似文献   

5.
The new layered transition metal oxides NaRbLnMO5 (Ln = Nd, Sm, Eu, Gd; M = Nb, Ta) were synthesized by direct solid-state reaction. NaRbLaNbO5 crystallizes with a tetragonal unit cell [a=5.839(6) Å, c=8.313(1) Å] analogous to that of the related compound NaKLaNbO5, while NaRbLaTaO5 indexes to a larger monoclinic unit cell [a=9.577(2) Å, b=5.834(1) Å, c=8.323(2) Å, β=93.00(2)]. NaRbLnNbO5 can be prepared for Ln = Nd, Sm, Eu, Gd, and NaRbLnTaO5 can be prepared for Ln = Nd, Sm. Both series of compounds show the expected decrease in unit cell volume as the size of the lanthanide decreases. NaRbLaNbO5 is also amenable to ion exchange, forming Li2−xRbxLaNbO5 upon reaction with molten lithium nitrate.  相似文献   

6.
A new lithium cobalt metaphosphate, LiCo(PO3)3, is reported for the first time, which was discovered during the exploratory synthesis in Li-Co-P-O system by solid state reaction. The structure has been refined by powder X-ray Rietveld refinement method (P212121, a = 8.5398(2) Å, b = 8.6326(2) Å and c = 8.3520(2) Å, Z = 4, Rp = 13.6%, Rwp = 19.4%, Rexp = 17.7%, S = 1.11, χ2 = 1.23). It is isostructural with LiM(PO3)3 (M = Fe, Cu). It contains (PO3)1− chains with the Co atoms localized in the octahedral sites, bridging four neighboring chains. The magnetic susceptibility measurement showed a typical paramagnetic behavior of high spin of Co2+, following the Curie-Weiss law in the temperature range of 5-300 K. Unlike the olivine type lithium cobalt phosphate, LiCoPO4, cyclic voltammetry of LiCo(PO3)3 assembled in the coin-type cell showed no electrochemical activity in the voltage region of 1-5 V versus Li/Li+.  相似文献   

7.
Colorless platelet crystals of monoclinic Li2TiO3 with a maximum size of 5.0 mm × 5.0 mm × 0.5 mm were successfully grown by a flux method at 1373 K using a LiBO2-Li2O system flux. The stoichiometric chemical composition of Li2TiO3 was determined by the SEM-EDX, ICP-AES and density measurement using the single crystal samples. The thermal conductivity of the Li2TiO3 single crystals was evaluated using hot-disk method. A single-crystal X-ray diffraction study confirmed the monoclinic Li2SnO3-type structure, space group C2/c and the lattice parameters of a = 5.0623(5) Å, b = 8.7876(9) Å, c = 9.7533(15) Å, β = 100.212(11)°, and V = 427.01(9) Å3. The crystal structure was refined to the conventional values of R = 2.4% and wR=3.3% for 2187 independent observed reflections. The cationic arrangement of (LiTi2) layers in Li2TiO3 was precisely revealed by the structure analysis.  相似文献   

8.
The structure parameters of BaNd2Ti3O10 were refined based on Olsen’s model. This material has a monoclinic unit cell with space group P21/m. The unit cell parameters are: a=7.73030(14) Å, b=7.62578(14) Å, c=14.23174(31) Å, β=97.832(6)°. The structure can be considered as a layered perovskite-like structure, in which the perovskite block shows distortion. The various layers link in the order of (Ba1/2O)-(Ba1/2TiO3)-(NdTiO3)-(NdTiO3).  相似文献   

9.
Crystals of K2Hf2O5 and K4Hf5O12 were grown from molten potassium hydroxide flux. The crystal structures were determined by single-crystal X-ray diffraction. K2Hf2O5 crystallizes in the space group Pnna of the orthorhombic system, with unit cell dimensions of a = 5.780(1) Å, b = 10.640(2) Å, and c = 8.666(2) Å. This compound contains infinite chains of HfO6 octahedra that form a channel structure. K4Hf5O12 crystallizes in the space group of the trigonal system, with unit cell dimensions of a = 5.7877(2) Å and c = 10.3693(7) Å. This compound possesses a layered structure with six-coordinate Hf in three different coordination environments (trigonal prismatic, distorted octahedral, and regular octahedral).  相似文献   

10.
Two new perovskite oxychalcogenides, Ca2CuFeO3S and Ca2CuFeO3Se, have been synthesized in evacuated quartz tubes. They crystallize in P4/nmm space group with lattice parameters a = 3.8271(1), c = 14.9485(2) Å and a = 3.8605(1), c = 15.3030(2) Å for Ca2CuFeO3S and Ca2CuFeO3Se, respectively. They appear to be the first layered chalcogenide perovskites involving calcium and are structural analogs of the corresponding Sr and Ba compounds. The new compounds exhibit semiconducting properties with energy gap decreasing from the oxysulfide to the oxyselenide. Possibility of introducing Ca2+ into structures of known layered oxychalcogenides and oxypnictides is discussed.  相似文献   

11.
Chemical preparation, X-ray single-crystal, thermal behaviour, and IR spectroscopy investigations are given for a new organic cation sulfate (C7H10NO)2SO4 (denoted BOAS) in the solid state. This compound crystallizes in the monoclinic space group P21/c. The unit cell dimensions are: a = 7.010(3) Å, b = 11.142(5) Å, c = 20.770(8) Å, β = 95.27(3)° with V = 1615.4(12) Å3 and Z = 4. The structure has been solved using a direct method and refined to a reliability R factor of 0.047. The title compound consists of a framework of isolated SO4 tetrahedral interleaved with organic molecules, so as to build isolated ribbons parallel to a-axis. In the present work, we describe the crystal structure, thermal behaviour and IR analysis of this new compound.  相似文献   

12.
Apatite structure type ortho phosphates of the formula NaLaCa3(PO4)3OH and NaLaSr3(PO4)3OH have been synthesized via a simple solution route. The compounds are isostructural with calcium hydroxyapatite. The phases are characterized by powder X-ray diffraction method and infrared spectroscopy. The unit cell parameters are: for NaLaCa3(PO4)3OH, a = 9.457(3) and c = 6.90(1) Å and for NaLaSr3(PO4)3OH, a = 9.720(3) and c = 7.23(3) Å, respectively. Knoevenagel condensation of selected aldehydes and molecules with activated methylene group is carried out using the phosphates as solid supports. Both phases facilitated the condensation reaction at room temperature in the absence of a solvent. An increase in the yield of the products is noticed when the supports are used with water.  相似文献   

13.
Chemical preparation, crystal structure and NMR spectroscopy of a new organic cation 5-chloro(2,4-dimethoxy)anilinium monophosphate H2PO4 are given. This new compound crystallizes in the monoclinic system, with the space group P21/c and the following parameters: a = 5.524(2) Å, b = 9.303(2) Å, c = 23.388(2) Å, β = 90.66(4), V = 1201.8(2) Å3, Z = 4 and Dx = 1.573 g cm−3. Crystal structure has been determined and refined to R = 0.031 and Rw = 0.080 using 1702 independent reflections. Structure can be described as an infinite (H2PO4)nn corrugated chains in the a-direction. The organic groups (5-Cl-2,4-(OCH3)2C6H2NH3)+ are anchored between adjacent polyanions through multiple hydrogen bonds. This compound is also investigated by IR, thermal, and solid-state, 13C, 31P MAS NMR spectroscopies.  相似文献   

14.
Structural properties of the 2,4,6-triaminopyridinium dihydrogendiphosphate dihydrate are discussed on the basis of an X-ray structure investigation. (C4H8N5)2H2P2O7·2H2O is monoclinic, C2/c, with a = 10.414(1) Å, b = 13.365(1) Å, c = 13.736(2) Å, β = 98.39(4)°, and Z = 4. The structure has been solved by a direct method and refined to a reliability R factor of 0.0375 (Rw = 0.0961) using 2751 independent reflections. The structural arrangement can be described as inorganic infinite ribbons, , spreading along the c direction; the organic groups, [C4H8N5]+, link the precedent ribbons, via their hydrogen bonds, to form a three-dimensional network. The present work, deals with crystal structure, thermal behavior and IR analysis of this new compound.  相似文献   

15.
Chemical preparation, crystal structure, calorimetric, and spectroscopic investigations are given for a new organic-cation dihydrogenomonophosphate, (4-C2H5C6H4NH3)H2PO4 in the solid state. This compound crystallizes in the orthorhombic space group Pbca with the following unit cell parameters: a=8.286(3) Å, b=9.660(2) Å, c=24.876(4) Å, Z=8, V=1991.2(7) Å3, and DX=1.442 g cm−3. Crystal structure was solved with a final R=0.054 for 3305 independent reflections. The atomic arrangement coaled described as H2PO4 layers between which are located the 4-ethylanilinium cations.  相似文献   

16.
Chemical preparation, X-ray characterization, IR spectroscopy and thermal analysis of a new cyclotriphosphate: (C7H10NO)3P3O9·4H2O abbreviated as OACTP, are reported. This mixed organo-mineral compound crystallizes in the monoclinic system with P21/n space group, the unit cell dimensions are: a = 6.605(3) Å, b = 26.166(3) Å, c = 18.671(8) Å, β = 91.95(3)°, Z = 4 and V = 3255(2) Å3. The structure was solved using a direct method and refined to a reliability R-factor of 0.043 using 3931 independent reflections (I > 2σI). Atomic arrangement exhibits infinite (P3O9·2H2O)n3n chains connected by organic cations. The thermal behavior and the IR spectroscopic studies of this new compound are discussed.  相似文献   

17.
The crystal structure behavior of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P21/n (#14) space group and 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (#12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (#12) to tetragonal I4/m (#87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (#12) to tetragonal I4/m (#87) is characterized by strongly anisotropic displacements of the anions.  相似文献   

18.
The double perovskite Mn2FeSbO6 has been synthesized under pressure 6 GPa and temperature 1000 °C. The crystal structure refinement of Mn2FeSbO6 was carried out with the GSAS program suite using X-ray diffraction data. XRD pattern of Mn2FeSbO6 was indexed with a monoclinic unit cell (space group P21/n) with parameters: a = 5.2431(3) Å, b = 5.3935(3) Å, c = 7.6358(5) Å, β = 89.693(2)°, V = 215.927 Å3, Z = 2. It found that Fe and Sb atoms are completely ordered in 2d and 2c positions of double perovskite structure respectively. According to XPS measurements, manganese in this compound is present as Mn2+, whiles the iron - as Fe3+. Magnetization measurements revealed the presence about 3 mass% of ferromagnetic impurity in the sample. Dependence of AC susceptibility χ″ from temperature showed that magnetic properties compound are determined probably by transformation in antiferromagnetic state below 19.5 K.  相似文献   

19.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

20.
The crystal structure of Ca0.28Ba0.72Nb2O6 (CBN-28) crystal with Nd-doping has been determined from X-ray single crystal diffraction data, in the tetragonal system with space group P4bm and the following parameters: a = b = 12.458 Å, c = 3.954 Å, V = 613.688 Å3, and Z = 5. X-ray diffraction results on a Nd-doped CBN-28 single crystal also have demonstrated that Nd3+ and Ca2+ occupy the same site in the crystal structure. Dielectric and ferroelectric measurements have been performed. Transition from ferroelectric to paraelectric at around 223 °C has been observed. The Nd-doped crystal has a lower Curie temperature (Tm) than that of undoped CBN-28 crystal. The spontaneous polarization (Ps) and coercive electric field (Ec) also decrease compared with their values in the undoped CBN-28 crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号