首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in situ optical microspectroscopy investigation of the growth and oxidation of silver nanoparticles (NPs) embedded in SiO2 thin films deposited on soda-lime glass has been conducted in real time during thermal processing in air. Variation of Ag NP size is followed by fitting of surface plasmon resonance (SPR) with spectra calculated by Mie theory, and analysed concurrently with the time evolution of SPR peak intensity. The NP transformations appeared to be temperature and time dependent. Silver NPs were indicated to grow at relatively high temperatures (e.g. 600 °C) due to Ostwald ripening, followed by a plateau and a gradual decrease in size resulting in SPR vanishing due to oxidation. The three phases were well separated in time. Oxidation appeared dominant at lower temperatures (e.g. 400 °C) as indicated by a continuous decrease in Ag particle size. The product of Ag NP oxidation was revealed by photoluminescence spectroscopy as single Ag+ ions. Furthermore, the data indicated that: (i) Ag+ ions are formed during heat treatment under an Ag/Ag+ redox equilibrium; (ii) the ions diffuse from the SiO2 matrix towards the soda-lime substrate where they stabilize; and (iii) the continuous removal of these ions from the matrix is necessary in order for the equilibrium to be displaced towards oxidation.  相似文献   

2.
We have investigated the electrochromic properties of amorphous granular tungsten oxide (WO3 + δ) thin films with over-stoichiometric oxygen content (δ), using LiClO4 with propylene carbonate as an electrolyte. Different optical and electrochromic characteristics are observed with increasing δ. All the devices are electrochemically stable for more than 5000 color/bleach cycles without apparent degradation, and they have a faster response to coloration than to bleaching. WO3 + δ films with an optimized δ value show an optical modulation of 86% at a wavelength of 630 nm and the highest coloration efficiency ever reported of ~ 213 cm2/C. The δ-dependent coloration mechanism is discussed using the site saturation model. It is proposed that WO3 + δ films with the optimal δ value have favorable thickness and stoichiometry for the generation of Li+W+5 states.  相似文献   

3.
Thin films of CaWO4 and SrWO4 were prepared on glass substrates by spray pyrolysis. The effects of preparation conditions and monovalent, bivalent and trivalent cation doping on cathodoluminescence (CL) properties of the films were studied. Polycrystalline CaWO4 and SrWO4 films formed a scheelite structure after being annealed above 300°C. They exhibited analogous cathodoluminescence consisting of a blue emission band at 447 nm and a blue-green emission band at 487 nm. The blue and blue-green emission intensities increased with substrate and annealing temperature. Annealing atmosphere and doping with Ag+, Pb2+ and La3+ did not influence the characteristics of the blue and blue-green emissions, whereas Eu3+ did. The results indicated both the blue and blue-green emissions originated from the WO42− molecular complex. The luminance and efficiency for CaWO4 film were 150 cd/m2 and 0.7 lm/W at 5 kV and 57 μA/cm2.  相似文献   

4.
The glass formation regions in the system SeO2-Ag2O-B2O3 have been determined using the melt quenching method of evacuated silica ampoules. The structural units forming the amorphous network have been established by IR spectroscopy. The presence of SeO3 (ν = 820 cm−1; 760-750 cm−1), BO3 (ν = 1340, 1270 cm−1) and BO4 (ν = 1050 cm−1) units has been confirmed. Crystallization of Ag2SeO3 only has been observed in a wide concentrate region near the glass formation boundary. A model explaining the unsatisfactory glass formation ability in the system investigated has been developed. It has been suggested that Ag+ ions are predominantly located near the selenite units, which stimulates the formation of isolated SeO3 groups. The transformation of BO3 into BO4 units is hindered by the absence of free Ag+ ions near the borate units.  相似文献   

5.
An efficient and environmentally friendly method has been developed to prepare Ag nanoparticles (AgNPs) coated tea polyphenols/polystyrene (Ag-TP/PS) nanofiber membrane, which combines electrospinning and in situ reduction of [Ag(NH3)2]+ using TP as the reductant and stabilizer. In this method, TP/Pluronic/PS nanofiber membranes are fabricated by electrospinning and then immersed in the aqueous solution of [Ag(NH3)2]+. While TP is being released from TP/Pluronic/PS nanofibers, the surface of TP/Pluronic/PS nanofibers could function as reactive sites for reduction of [Ag(NH3)2]+ without any extra reagents. XRD results indicate that AgNPs thus formed are in metallic form of Ag0. SEM images show that AgNPs can be densely and uniformly coated on the surface of TP/Pluronic/PS nanofibers. The as-prepared Ag-TP/PS nanofiber membranes exhibit excellent catalytic properties for the degradation of methylene blue. Furthermore, the effect of [Ag(NH3)2]+ concentration on the morphology and catalytic activity of the membrane is investigated. In addition, the antibacterial assays reveal that Ag-TP/PS nanofiber membrane possesses extraordinary antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli microorganisms. The free-standing membrane is flexible and easy to handle, which is promising for potential applications in catalysis, antibacterial agents and water remediation fields.  相似文献   

6.
The formation of silver nanoparticle films in a patterned manner on suitable substrates is described. The protocol for realising such structures comprises of the following steps. In the first step, patterned films of a fatty acid are thermally evaporated onto solid supports using suitable masks (e.g. a TEM grid). Thereafter, the fatty acid film is immersed in silver nitrate solution and Ag+ ions entrapped in the lipid matrix by electrostatic complexation with the carboxylate ions of the fatty acid molecules. The final step involves the reduction of the Ag+ ions in situ thus leading to the formation of silver nanoparticles within the patterned lipid matrix. The process of metal ion incorporation and reduction may be repeated a number of times to increase the nanoparticle density in the lipid matrix. The silver nanoparticle density may also be increased by dissolution of the fatty acid molecules in suitable solvents. The process of Ag+ ion entrapment and formation of silver nanoparticles within the patterned lipid matrix has been followed by quartz crystal microgravimetry, UV-VIS spectroscopy, FTIR, SEM and EDX. The process described shows immense potential for extension to assemblies of nanoparticles in more intricate patterns as well as to the growth of semiconductor quantum dots in such patterns.  相似文献   

7.
We report in this paper, results on the formation and dissolution of Cu-based nanoparticles in sol-gel SiO2 thin films using heat treatment and UV light exposure, respectively. Using UV-vis-NIR spectroscopy, we have shown that Cu2O nanoparticles can be generated by controlling the aging of the sol prior to film deposition while the Cu0 nanoparticles can be synthesized using a heat treatment in H2 atmosphere at 550 °C for 6 h. It has been also demonstrated that irradiation with an UV pulsed (Q-switched Nd:YAG) or continuous black ray UV lamp can dissolve these Cu-based nanoparticles with controlled, spatial selectivity. The mechanism of the dissolution process was found to be mainly thermal. Finally, we report a new analytical technique for detecting/confirming the presence of low densities of Cu nanoparticles in the films, based on a relative heat flow measurement of such films using a micro-thermal analyzer (e.g., TA Instruments μTA model 2990).  相似文献   

8.
The multifunctional thin films (BW12/Ag NPs)n (BW12 = BW12O40, NPs = nanoparticles) were prepared by layer-by-layer self-assembly method. The (BW12/PEI-Ag+)n (PEI = polyethylenimine) composite films were achieved through alternately depositing anionic BW12 and cationic PEI-Ag+ complex. The deposition process of (BW12/PEI-Ag+)10 multilayer is linear layer-by-layer self-assembly. Under UV irradiation, Ag ions in (BW12/PEI-Ag+)n multilayer films were reduced photochemically into Ag NPs and (BW12/Ag NPs)10 films were obtained. Through UV-vis measurements, the presence of surface plasma absorption peak at 445 nm demonstrated the formation of silver NPs. The electrochemical and antibacterial activities of (BW12/Ag NPs)n films were investigated. The electrochemical results indicate that the glassy carbon electrode modified with (BW12/Ag NP)n film exhibits the electroreduction toward O2. Moreover, the (BW12/Ag NP)10 multilayer films exhibit long-lasting antibacterial properties toward Escherichia coli (E. coli).  相似文献   

9.
Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to follow the changes that occur on the surfaces of silver sheets when reacting with sulphide solutions of pH 12. The results obtained enabled conclusions to be drawn about the nature of the Ag2S films. Immersion in dilute sulphide solutions ( 3 × 10–4 M) resulted in highly irregular films that were interrupted by shallow depressions (cavities). Inside these cavities AES analysis proved the existence of massive carbon species, the presence of which delayed healing of the cavities by the formation of Ag2S film, thus allowing the silver metal interface to continue in contact with the solution oxygen. This explains why silver electrodes maintain the Ag/Ag2O potential while immersed in dilute sulphide solutions. Equilibration of silver with more concentrated sulphide solutions (5 × 10–4 to 5 × 10–3 M) effected healing of the cavities through the formation of a continuous Ag2S film. Once this continuous film is formed, the metal interface is no longer accessible to the solution oxygen. At this point the transition of potential from Ag/Ag2O to Ag/Ag2S occurs.  相似文献   

10.
The combustion synthesized Ag/CeO2 catalysts have been characterized by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Ag K-edge. It has been found that Ag+ like species is present in 1% Ag/CeO2 catalyst, whereas mostly Ag metal clusters are found in 3% Ag/CeO2. The analysis of EXAFS spectra indicates that about one oxygen atom is coordinated to Ag central atom at a distance of 2.19 Å in 1% Ag/CeO2 catalyst along with eight coordinated AgAg bond at 2.86 Å. The AgO bond is absent in 3% Ag/CeO2.  相似文献   

11.
Radiolytic reduction of silver and gold ions and subsequent formation of their aggregates have been studied in propan-2-ol:cyclohexane mixture using pulse radiolysis technique. The silver sol, produced on irradiation of Ag+ solution with a train of electron pulses, has been characterized using XRD and TEM. The size of the particles has been found to be in the range of 30-50 nm. The silver sol emit light with a maximum at 340 nm on irradiation with a high energy electron beam. The intensity of emission has been found to decrease with decrease in concentration of Ag particles. Formation of colloidal gold has also been observed on irradiation of NaAuCl4 solution in propan-2-ol:cyclohexane by train of electron pulses. The particles so formed are oxidized on exposure to air. No light emission has been observed from Au sol.  相似文献   

12.
AgBr-doped silsesquioxane-titania films with a thickness of approximately 5 μm were prepared using a sol-gel technique. The dopant AgBr crystals were converted into very small Ag nanoparticles (mainly several nanometers) upon blue laser irradiation, leading to an increase in the absorption of the film in the visible region. An excess of Ag+ ions in the film was required for the conversion of AgBr into Ag upon blue laser irradiation. A maximum diffraction efficiency of 0.03% was achieved after two-beam interference exposure with a blue laser for 1300 s. These results imply that the films are suitable for use as holographic materials.  相似文献   

13.
The evaluation of the bactericidal effect of different silver-containing materials where silver is available as Ag+ (silver nitrate and different silver-exchanged zeolites), as metallic Ag0 (commercial silver nanoparticles) or as oxide (silver (I) oxide) was carried out in order to elucidate the importance of the bioavailability of silver (i.e., as free ions, metallic particles, combination of them, clusters, complexes, partially soluble or insoluble salts, etc.) on its bactericidal action.For the different materials tested, their bactericidal effect is ordered in the following sequence: AgNO3 > Ag-ZSM-5 > Ag2O > commercial silver-exchanged zeolite (granular) > commercial silver-exchanged zeolite (pellets) > Ag nanoparticles. In general, as the content of bioavailable ionic silver increases, the biocidal effectiveness of the corresponding silver-releasing material increases too.  相似文献   

14.
Silver sulphide (Ag2S) thin films were grown on the surface of silver films (Ag) deposited on glass substrate by using a simple chemical sulphurization method. According to X-ray diffraction analysis, the Ag2S thin films display low intensity peaks at 34.48°, 36.56°, and 44.28°, corresponding to diffraction from (100), (112) and (103) planes of the acanthite phase (monoclinic). A model of the type Ag2S/Ag/glass was deduced from spectroscopic ellipsometric measurements. Also, the optical constants (n, k) of the system were determined. Furthermore, the optical properties as solar selective absorber for collector applications were assessed. The optical reflectance of the Ag2S/Ag thin film systems exhibits the expected behavior for an ideal selective absorber, showing a low reflectance in the wavelength range below 2 µm and a high reflectance for wavelengths higher than that value. An absorptance about 70% and an emittance about 3% or less were calculated for several samples.  相似文献   

15.
Within the Tl2O-Ag2O-TeO2 system, a large glass-forming domain was evidenced and is presented for the fist time. Densities, glass transition (Tg) and crystallization (Tc) temperatures of the relevant glasses were measured. A structural approach of these glasses as functions of the composition was performed using Raman scattering. The Raman spectra were analysed in terms of the structural modifications induced by the Tl2O and Ag2O modifiers. It has clearly evidenced a phase separation inherent in tellurite glasses with low valence cations (as Tl+ and Ag+). The glasses would be constituted of two phases only: one of pure TeO2 and one of pure ortho-tellurite M2TeO3 (M = Ag, Tl) with the statistically mixed Ag-Tl cationic composition.  相似文献   

16.
A novel oxidation reaction of CO with aqueous H2O2 over Cu-NaY (2-15 wt%) and Ag-NaY (5-15 wt%) catalysts has been achieved at low temperatures (55-70 °C) using a flow mode system. The employed catalysts were prepared by the incipient wetness impregnation of NaY zeolite (Si/Al = 5.6, surface area = 910 m2/g) with an aqueous solution of known concentrations of copper acetate and silver nitrate. Solids were subjected to thermal treatment at 300-450 °C prior to catalytic measurements unless subjected to subsequent reduction with hydrogen at 350 °C. The physicochemical characterization of the catalysts was probed using X-ray diffraction (XRD), FT-IR and combined thermal analyses TGA-DrTGA. The XRD data indicated that, the Ag particles have an ordered location in the sodalite cavity and the center of a single six-ring. The FT-IR data also proved the presence of a new peak at 1385 cm−1 that is assigned to Ag-coordinated with the framework.A slow induced oxidation of CO (induction period, tind) took place at the initial stage of the CO oxidation reaction after which the reaction obeyed first-order kinetics. The utilized metal ions are proposed to be reduced to lower oxidation states such as Cu+ and Ag0 during the first period of reaction, tind, where the reaction proceeded favorably on such sites. Such argument was evidenced by carrying out the oxidation reaction over H2-reduced Cu10-NaY and Ag10-NaY catalysts. The reduction caused a decrease in the tind, giving an evidence that the lower oxidation states Cu+ and Ag0 are the active sites in the studied oxidation reaction. The enhancement in catalytic activity was interpreted in terms of the facile adsorption of CO on the low oxidation state species.  相似文献   

17.
Photoluminescence and low-voltage cathodoluminescence characteristics of ZnGa2O4 phosphor doped with monovalent ions has been studied. Monovalent ions such as Na+ and Ag+ are incorporated into ZnGa2O4 lattices in order to increase the concentration of oxygen vacancies in the spinel lattice. By doping low concentrations of monovalent ions (Na+, Ag+) into ZnGa2O4, the self-activated blue luminescence originated from oxygen vacancies is enhanced. Also, the blue luminescence intensity is enhanced more along with a good color purity by annealing ZnGa2O4:Na+ in a reducing atmosphere, which is due to increasing the concentration of oxygen vacancies even more. The luminescence band at the UV region (λmax=360 nm) does not become the major luminescence band by introducing Na+ ion into the ZnGa2O4 lattice, while the UV luminescence band becomes the major one by annealing the undoped ZnGa2O4 in a reducing atmosphere.  相似文献   

18.
Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus “Fusarium semitectum” for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag+ to Ag0). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.  相似文献   

19.
Silver (Ag) nanoparticles (∼6 nm) were synthesized using a novel dialysis process. Silver nitrate was used as a starting precursor, ethylene glycol as solvent and hydroxy propyl cellulose (HPC) introduced as a capping agent. Different batches of reaction mixtures were prepared with different concentrations of silver nitrate (AgNO3). After the reduction and aging, these solutions were subjected to ultra-violet visible spectroscopy (UVS). Optimized solution, containing 250 mg AgNO3 revealed strong plasmon resonance peak at ∼410 nm in the spectrum indicating good colloidal state of Ag nanoparticles in the diluted solution. The optimized solution was subjected to dialysis process to remove any unreacted solvent. UVS of the optimized solution after dialysis showed the plasmon resonance peak shifting to ∼440 nm indicating the reduction of Ag ions into zero-valent Ag. This solution was dried at 80 °C and the resultant HPC capped Ag (HPC/Ag) nanoparticles were studied using transmission electron microscopy (TEM) for their particle size and morphology. The particle size distribution (PSD) analysis of these nanoparticles showed skewed distribution plot with particle size ranging from 3 to 18 nm. The nanoparticles were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform infrared spectroscopy (FT-IR).  相似文献   

20.
Crystal structure and ionic conductivity of ruthenium diphosphates, ARu2(P2O7)2 A=Li, Na, and Ag, were investigated. The structure of the Ag compound was determined by single crystal X-ray diffraction techniques. It crystallized in the triclinic space group P−1 with a=4.759(2) Å, b=6.843(2) Å, c=8.063(1) Å, α=90.44(2)°, β=92.80(2)°, γ=104.88(2)°, V=253.4(1) Å3. The host structure of it was composed of RuO6 and P2O7 groups and formed tunnels running along the a-axis, in which Ag+ ions were situated. The ionic conductivities have been measured on pellets of the polycrystalline powders. The Li and Ag compounds showed the conductivities of 1.0×10−4 and 3.5×10−5 S cm−1 at 150 °C, respectively. Magnetic susceptibility measurement of the Ag compound showed that it did not obey the Curie-Weiss law and the effective magnetic moment decreased as temperature decreased due to the large spin-orbital coupling effect of Ru4+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号