首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (Y0.94−xyAlxGdyEu0.06)BO3 (0 ≤ x ≤ 0.04 and 0 ≤ y ≤0.4) phosphors were single-phase with a hexagonal vaterite crystal structure. The (Y0.94−x−yAlxGdyEu0.06)BO3 phosphor powders showed smooth, regular, and spherical morphology. The emission intensity of the Al- and Gd-co-doped (Y0.74−xAlxGd0.2Eu0.06)BO3 and (Y0.925−yAl0.015GdyEu0.06)BO3 phosphors was much higher than that of Al-free (Y0.74Gd0.2Eu0.06)BO3 and Gd-free (Y0.925Al0.015Eu0.06)BO3 phosphors, respectively. This means that the simultaneous addition of Gd and Al to yttrium borates was desirable for improving their photoluminescent properties.  相似文献   

2.
Eu3+- and Tb3+-activated SrGdGa3O7 phosphors were synthesized by the solid-state reaction and their luminescence properties were investigated. Sr(Gd1 − xEux)Ga3O7 and Sr(Gd1 − xTbx)Ga3O7 formed continuous solid solution in the range of x = 0-1.0. Unactivated SrGdGa3O7 exhibited a typical characteristic excitation and emission of Gd ion. The SrGdGa3O7:xEu3+ and SrGdGa3O7:xTb3+ phosphors also showed the well-known Eu3+ and Tb3+ excitation and emission. The energy transfer from Gd3+ to Eu3+ and Tb3+ were verified by photoluminescence spectra. The dependence of photoluminescence intensity on Eu3+ and Tb3+ concentration were also studied in detail and the photoluminescence (PL) intensity of SrGdGa3O7:Eu and SrGdGa3O7:Tb were compared with commercial phosphors, Y2O3:Eu and LaPO4:Ce,Tb. The luminescence decay measurements showed that the lifetimes of Eu3+ and Tb3+ were in the range of microsecond. The energy transfer from Gd3+ to Tb3+ was also observed in decay curve.  相似文献   

3.
A series of Eu3+ activated Li6Y1−xEux(BO3)3 (0.05 ? x ? 1) phosphors were synthesized by solid-state reaction method. The structures and photoluminescent properties of the phosphors were investigated at room temperature. The results of XRD patterns indicate that these phosphors are isotypic to the monoclinic Li6Gd(BO3)3. The excitation spectra indicate that these phosphors can be effectively excited by near UV (370-410 nm) light. The red emission from transition 5D07F2 is dominant. The emission spectra exhibit strong red performance (CIE chromaticity coordinates: x = 0.65, y = 0.35), which is due to the 5D07FJ transitions of Eu3+ ions. The relationship between the structure and the photoluminescent properties of the phosphors was studied. The concentration quenching occurs at x ≈ 0.85 under near UV excitation. Li6Y(BO3)3:Eu3+ has potential application as a phosphor for white light-emitting diodes.  相似文献   

4.
The novel vacuum ultraviolet (VUV) excited Na3Y9O3(BO3)8:Eu3+ red phosphor was synthesized and the photoluminescence (PL) properties were investigated. The phosphor showed strong VUV PL intensity, large quenching concentration (40 mol%) and good chromaticity (0.649, 0.351). The Eu3+-O2− charge transition (CT) was observed to be at a higher energy (232 nm, 5.35 eV). The host absorption at 127-166 nm was broad and strong when monitoring the Eu3+ emission, which indicated that energy transfer from the host-lattice to the Eu3+ ions was efficient in Na3Y9O3(BO3)8:Eu3+. These excellent VUV PL properties were revealed to be correlated with the unique isolated layer-type structure of Na3Y9O3(BO3)8 host. The results showed that the Na3Y9O3(BO3)8:Eu3+ would be a good candidate for VUV-excited red phosphor.  相似文献   

5.
The photoluminescent properties of a series of Tb3+-doped Na3GdP2O8 phosphors excitable by vacuum ultraviolet and ultraviolet light are reported. The host related absorption, f-f and f-d transitions of Gd3+ and Tb3+, and charge transfer of O2− → Gd3+ and O2− → Tb3+ are assigned. Under 147 nm light excitation, Na3GdP2O8:Tb3+ phosphors show efficient green emissions with a dominant peak at 545 nm. The optimal sample Na3Gd0.4Tb0.6P2O8 shows a shorter decay time and a comparable brightness when compared with the commercial Zn2SiO4:Mn2+ green phosphor. These results demonstrate that it is a potential candidate for plasma display panels application.  相似文献   

6.
The luminescent properties of Ca2Gd8(1−x)(SiO4)6O2:xDy3+ (1% ≤ x ≤ 5%) powder crystals with oxyapatite structure were investigated under vacuum ultraviolet excitation. In the excitation spectrum, the peaks at 166 nm and 191 nm of the vacuum ultraviolet region can be assigned to the O2− → Gd3+, and O2− → Dy3+ charge transfer band respectively, which is consistent with the theoretical calculated value using Jφrgensen's empirical formula. While the peaks at 183 nm and 289 nm are attributed to the f-d spin-allowed transitions and the f-d spin-forbidden transitions of Dy3+ in the host lattice with Dorenbos's expression. According to the emission spectra, all the samples exhibited excellent white emission under 172 nm excitation and the best calculated chromaticity coordinate was 0.335, 0.338, which indicates that the Ca2Gd8(SiO4)6O2:Dy3+ phosphor could be considered as a potential candidate for Hg-free lamps application.  相似文献   

7.
(Gd1−x,Eux)2O2SO4 nano-phosphors were synthesized by a novel co-precipitation method from commercially available Gd2O3, Eu2O3, H2SO4 and NaOH starting materials. Composition of the precursor is greatly influenced by the molar ratio of NaOH to (Gd1−x,Eux)2(SO4)3 (the m value), and the optimal m value was found to be 4. Fourier transform infrared spectrum (FT-IR) and thermal analysis show that the precursor (m = 4) can be transformed into pure (Gd1−x,Eux)2O2SO4 nano-phosphor by calcining at 900 °C for 2 h in air. Transmission electron microscope (TEM) observation shows that the Gd2O2SO4 phosphor particles (m = 4) are quasi-spherical in shape and well dispersed, with a mean particle size of about 30-50 nm. Photoluminescence (PL) spectroscopy reveals that the strongest emission peak is located at 617 nm under 271 nm light excitation, which corresponds to the 5D0 → 7F2 transition of Eu3+ ions. The quenching concentration of Eu3+ ions is 10 mol% and the concentration quenching mechanism is exchange interaction among the Eu3+ ions. Decay study reveals that the 5D0 → 7F2 transition of Eu3+ ions has a single exponential decay behavior.  相似文献   

8.
The vacuum ultraviolet excited luminescent properties of Eu3+, Tb3+, Dy3+, Sm3+ and Tm3+ in the matrices of Ca4Y6(SiO4)6O were investigated. The bands at about 173 nm in the vacuum ultraviolet excited spectra were attributed to host lattice absorption of the matrix Ca4Y6(SiO4)6O. For Eu3+-doped samples, the O2− → Eu3+ CTB was identified at 258 nm. Typical 4f-5d absorption bands in the region of 195-300 nm were observed in Tb3+-doped samples. For Dy3+-doped and Sm3+-doped samples, the broad excitation bands consisted of host absorptions, CTB and f-d transition. For Tm3+-doped samples, the O2− → Tm3+ CTB was located at 191 nm. About the color purity and emission intensity, Ca4Y6(SiO4)6O:Tb3+ is an attractive candidate of green light PDP phosphor, and Ca4Y6(SiO4)6O:Dy3+ has potential application in the field of mercury-free lamps.  相似文献   

9.
The highly efficient red phosphors (Ca1−xSrx)(S1−ySey):Eu2+,M3+ (M = Sc and Y) were prepared, starting from CaCO3, SrCO3, Eu2O3, Sc2O3, Y2O3, S, and SeO2 with a flux, by a conventional solid-state reaction. The optimized red phosphors converted 11.8% (Sc3+) and 11.7% (Y3+) of the absorbed blue light into luminescence. These quantum values are much higher than Q = 3.0% of CaS:Eu2+. For the fabrication of light-emitting diodes (LEDs), the prepared phosphors were coated with MgO from non-aqueous solution to overcome their weakness against moisture. White LEDs were fabricated by pasting the prepared red phosphors and the yellow YAG:Ce3+ phosphor on an InGaN blue chip (λems = 446.5 nm). The incorporation of the red phosphor to the YAG:Ce3+ phosphor resulted in an improved color rendering index (Ra) from 70 to 80.  相似文献   

10.
The present investigation aims to demonstrate the potentiality of Tb3+ and Ce3+ co-doped Ca4Y6(SiO4)6O phosphors. By incorporation of Ce3+ into Ca4Y6(SiO4)6O: Tb3+, the excitation band was extended from short-ultraviolet to near-ultraviolet region. The energy transfer from Ce3+ to Tb3+ in Ca4Y6(SiO4)6O host was investigated and demonstrated to be a resonant type via a dipole–dipole mechanism with the critical distance of 10.2 Å. When excited by 352 nm, Ca4Y6(SiO4)6O: Ce3+, Tb3+ exhibited a brighter and broader violet-blue emission (421 nm) from the Ce3+ and an intense green emission (542 nm) from the Tb3+. Combining the two emissions whose intensities were adjusted by changing the doping levels of the co-activator, an optimized white light with chromaticity coordinates of (0.278, 0.353) is generated in Ca4Y6(SiO4)6O: 2% Ce3+, 8% Tb3+, and this phosphor could be potentially used in near-ultraviolet light-emitting diodes.  相似文献   

11.
GdAl3(BO3)4:Ln3+ (Ln3+:Eu3+, Tb3+, Dy3+) nano-phosphors were prepared by sol–gel method. The structure properties of the phosphors are characterized by XRD, and GdAl3(BO3)4:Ln3+ nano-phosphors have average sizes around 40 nm. The doping concentrations of Eu3+, Tb3+ and Dy3+ ions in GdAl3(BO3)4 nano-phosphors are from 1 to 9 mol% for Eu3+ ions, from 2 to 12 mol% for Tb3+ ions and from 1 to 5 mol% for Dy3+ ions, respectively. The luminescent properties of rare-earth ions doped GdAl3(BO3)4 nano-phosphors are analyzed by the photoluminescence spectra, which prime doping concentration of Eu3+, Tb3+, and Dy3+ ions are at 5, 12 and 3 mol%, respectively. The energy transfers in the luminescent processes of rare-earth ions doped GdAl3(BO3)4 nano-phosphors are discussed.  相似文献   

12.
Ba1−ySryLa4−xTbx(WO4)7 (x = 0.02-1.2, y = 0-0.4) phosphors were prepared via a solid-state reaction and their photoluminescence properties were investigated. An analysis of the decay behavior indicates that the energy migration between Tb3+ ions is conspicuous in the 5D3 → 7F4 transition due to the cross-relaxation in BaLa4(WO4)7. A partial substitution of Ba2+ by Sr2+ can not only enhance the emission intensity but also increase the solid solubility of Tb3+ in Ba1−ySryLa4−xTbx(WO4)7. The emission intensity of the 5D4 → 7FJ (J = 4, 5, 6) transitions can be enhanced by increasing Sr2+ and Tb3+ concentrations, with the optimal conditions being x = 1.2, y = 0.4 (Ba0.6Sr0.4La2.8Tb1.2(WO4)7). Under near-UV excitation at 379 nm, the CIE color coordinates of Ba1−ySryLa4−xTbx(WO4)7 vary from blue (0.212, 0.181) at x = 0.04, y = 0, to green (0.245, 0.607) at x = 1.2, y = 0.4.  相似文献   

13.
The phosphors in the system Sr2−xyP2O7:xEu2+,yMn2+ were synthesized by solid-state reactions and their photoluminescence properties were investigated. These phosphors have strong absorption in the near UV region, which is suitable for excitation of ultraviolet light emitting diodes (UVLEDs). The orange-reddish emission of Mn2+ in these phosphors can be used as a red component in the tri-color system and may be enhanced by adjusting the Mn2+/Eu2+ ratio. The energy transfer from Eu2+ to Mn2+ is observed with a transfer efficiency of ∼0.45 and a critical distance of ∼10 Å. The results reveal that Sr2−xyP2O7:xEu2+,yMn2+ phosphors could be used in white light UVLEDs.  相似文献   

14.
New red Ca10K(PO4)7:Eu3+, K+ phosphors were synthesized by solid state reaction and their photoluminescence properties as well as those by co-doping Mo6+ under near ultraviolet excitation were investigated. From the excitation spectra monitored at 611 nm, it can be seen that the strongest excitation peak is situated at 393 nm, well matching with the emission wavelength of near-ultraviolet chips for white LEDs. Upon 393 nm excitation, the brightness of Ca9K(PO4)7:0.5Eu3+, 0.5 K+ with the optimal Eu3+-doping concentration is about 2.3 times stronger than that of the commercial red Y2O3:Eu3+ phosphor. The introducing of Mo6+, which results in a possible variety for the excited energy level of the host, can enhance the brightness of Eu3+ to be maximized by about 15%. The CIE chromaticity coordinates of Ca9K(PO4)7:0.5Eu3+, 0.5 K+ are calculated to (0.654, 0.345), which are close to the (0.67, 0.33) standard of the National Television System Committee. All the above results indicate Eu3+-activated Ca10K(PO4)7 is a potential candidate for white LEDs.  相似文献   

15.
A new yttrium borate compound K3Y3(BO3)4 has been obtained in the K2O-Y2O3-B2O3 ternary system. Its structure, determined from single crystal X-ray diffraction data, shows that it belongs to space group P21/c with unit cell dimensions of a = 10.4667(16) Å, b = 17.361(3) Å, c = 13.781(2) Å and β = 110.548(8)°. The structure consists sheets of [Y8B8O24] linked by out of sheet BO3 groups and Y ions to form a three-dimensional framework. The luminescent properties of Eu3+ and Tb3+ doped K3Y3(BO3)4 materials have also been studied.  相似文献   

16.
NaTb(1−x)Eux(WO4)2 (= 0-100%) phosphors have been synthesized via a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the samples. Moreover, the luminescence colors of NaTb(1−x)Eux(WO4)2 (NTbW:Eu) samples can be tuned from green, green-yellow, and yellow to red by simply adjusting the relative Eu3+-doping concentrations under a single wavelength excitation, which might find potential applications in the light displays systems.  相似文献   

17.
M2Y8(SiO4)6O2: Tb3+ (M = Ca, Sr) phosphors have been synthesized with a new silicon source silane crosslinking reagent (N-2-aminoethylic-3-aminopropyldiethoxysilane [NH2(CH2)2NH(CH2)3SiCH3(OCH3)2], abbreviated as AEAPMMS) through the sol-gel process, both of which present the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb3+ ions. It is interesting to be found that the high energy level blue emission (5D3 → 7FJ (J = 6, 5, 4, 3) transition) still can be found in the emission spectrum of Ca2Y8(SiO4)6O2: Tb3+ while it disappears in the emission spectrum of Sr2Y8(SiO4)6O2: Tb3+ for the cross-relaxation-induced quenching.  相似文献   

18.
Intense red-emitting phosphors for LED solid-state lighting   总被引:1,自引:0,他引:1  
The phosphors Gd2−xEux(MoO4)3 (x = 0.20, 0.40, 0.60, 0.80, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0), Gd0.8−xYxEu1.2(MoO4)3 (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and Gd0.2Y0.6−xEu1.2Smx(MoO4)3 (x = 0.02, 0.024, 0.028, 0.032, 0.036, 0.04) were prepared by solid-state reaction technique at 950 °C. The presence of the Y3+ and Sm3+ ions strengthen and broaden the absorption of the phosphors at ∼400 nm. The intense red-emitting phosphor Gd0.2Y0.572Eu1.2Sm0.028(MoO4)3 with orthorhombic structure was obtained. Both Eu3+ and Sm3+ f-f transition absorptions are observed in the excitation spectra, the main emission line is at 616 nm (5D0 → 7F2 transition of Eu3+) and the chromaticity coordinates (x = 0.66, y = 0.33) is very close to the NTSC standard values (x = 0.67, y = 0.33). It is considered to be an efficient red-emitting phosphor for GaN-based light emitting diode (LED).  相似文献   

19.
The effects of charge compensation on the luminescence behavior of a red-emitting phosphor, Ca3Sr3(VO4)4:Eu3+, were investigated. It has been observed that charge compensated by monovalent ions, especially Na+, shows greatly enhanced red emission under ultraviolet excitation. It is found that Na2CO3 addition acts as a fluxing agent and plays a role in charge compensation, which clearly improves the emission intensity of Eu3+-activated Ca3Sr3(VO4)4. Enhanced emission intensity of the corresponding charge compensated phosphors under ultraviolet radiation may find application in the production of red phosphors for white light-emitting diodes.  相似文献   

20.
(Y,Gd)BO3:Eu3+ based phosphors were prepared by combustion technique followed by solid state sintering in air. The 4f-4f excitation at 394 nm of (Y0.54Gd0.46)x (BO3)y:Eu3+ exhibits red emission at 593 nm. Its photoluminescence (PL) efficiency depends critically on the BO3 to (Y,Gd) molar ratio. Optimal luminescence was obtained at the y/x molar ratio of 1.38. A 12-fold increase in its luminescence efficiency was seen with an increase in Eu concentration from 0.5 to 8.4 mol% at this y/x ratio. At 8.4 mol% of Eu concentration, the PL sensitivity of (Y0.54Gd0.46)x (BO3)y:Eu3+ is 40% higher than that of the commercial (Y,Gd)BO3:Eu3+ phosphor. In view of the high luminescence efficiency, this phosphor could serve as a potential candidate for application as a red phosphor for nUV LED apart from its known application in plasma display panels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号