首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
结合随机子空间和核极端学习机集成提出了一种新的高光谱遥感图像分类方法。首先利用随机子空间方法从高光谱遥感图像数据的整体特征中随机生成多个大小相同的特征子集;然后利用核极端学习机在这些特征子集上进行训练从而获得基分类器;最后将所有基分类器的输出集成起来,通过投票机制得到分类结果。在高光谱遥感图像数据集上的实验结果表明:所提方法能够提高分类效果,且其分类总精度要高于核极端学习机和随机森林方法。  相似文献   

2.
针对高光谱遥感图像维数高、样本少导致分类精度低的问题,提出一种基于DS聚类的高光谱图像集成分类算法(DSCEA)。首先,根据高光谱数据特点,从整体波段中随机选择一定数量的波段,构成不同的训练样本;其次,分析图像的空谱信息,构造无向加权图,利用优势集(DS)聚类方法得到最大特征差异的波段子集;最后,根据不同样本,利用支持向量机训练具有差异的单个分类器,采用多数表决法集成最终分类器,实现对高光谱遥感图像的分类。在Indian Pines数据集上DSCEA算法的分类精度最高可达到84.61%,在Pavia University数据集上最高可达到91.89%,实验结果表明DSCEA算法可以有效的解决高光谱分类问题。  相似文献   

3.
目的 场景分类是遥感领域一项重要的研究课题,但大都面向高分辨率遥感影像。高分辨率影像光谱信息少,故场景鉴别能力受限。而高光谱影像包含更丰富的光谱信息,具有强大的地物鉴别能力,但目前仍缺少针对场景级图像分类的高光谱数据集。为了给高光谱场景理解提供数据支撑,本文构建了面向场景分类的高光谱遥感图像数据集(hyperspectral remote sensing dataset for scene classification,HSRS-SC)。方法 HSRS-SC来自黑河生态水文遥感试验航空数据,是目前已知最大的高光谱场景分类数据集,经由定标系数校正、大气校正等处理形成。HSRS-SC分为5个类别,共1 385幅图像,且空间分辨率较高(1 m),波长范围广(380~1 050 nm),同时蕴含地物丰富的空间和光谱信息。结果 为提供基准结果,使用AlexNet、VGGNet-16、GoogLeNet在3种方案下组织实验。方案1仅利用可见光波段提取场景特征。方案2和方案3分别以加和、级联的形式融合可见光与近红外波段信息。结果表明有效利用高光谱影像不同波段信息有利于提高分类性能,最高分类精度达到93.20%。为进一步探索高光谱场景的优势,开展了图像全谱段场景分类实验。在两种训练样本下,高光谱场景相比RGB图像均取得较高的精度优势。结论 HSRS-SC可以反映详实的地物信息,能够为场景语义理解提供良好的数据支持。本文仅利用可见光和近红外部分波段信息,高光谱场景丰富的光谱信息尚未得到充分挖掘。后续可在HSRS-SC开展高光谱场景特征学习及分类研究。  相似文献   

4.
基于SVM的高维多光谱图像分类算法及其特性的研究   总被引:4,自引:0,他引:4  
夏建涛  何明一 《计算机工程》2003,29(13):27-28,89
针对传统模式分类算法在处理高维多光谱图像时面临的困难,文章把支持向量机(Support Vector Machine,SVM)用于高维多光谱图像分类,有效地减弱了Hughes现象,获得了比传统方法更好的分类精度。研究了高维多光谱图像分类中SVM的分类性能与训练样本数目和数据维数之间的关系。实验结果表明,与传统模式分类方法相比,SVM具有分类精度高、推广性强的优点,尤其是当学习样本数目较少、数据维数高时,SVM的优势更加明显。  相似文献   

5.
徐佳庆  万文  吕启 《计算机科学》2018,45(9):288-293
高光谱遥感技术是当前遥感领域的前沿技术,将稀疏编码应用于高光谱遥感图像处理是近年来高光谱信息处理的一个热点研究方向。以提升高光谱遥感图像分类准确度为目标,提出一种基于二阶矩空谱联合稀疏编码的遥感图像分类方法。首先从各地物参考数据中选取训练样本,通过学习构造得到字典,然后在训练得到的字典的基础上通过稀疏编码获得每个像元的稀疏系数,之后将稀疏系数作为分类器的输入,通过分类器的分类判决得到最终的分类结果。利用北京市朝阳地区的天宫一号可见近红外高光谱遥感图像数据和KSC高光谱数据,将该方法与支持向量机(SVM)、基于光谱维信息的稀疏编码以及一阶矩空谱联合稀疏编码等方法进行了比较。实验结果表明,提出的分类方法较其他几种方法可以取得更好的分类效果,在天宫一号和KSC数据上的总体分类精度分别可达到95.74%和96.84%,Kappa系数分别可达到0.9476和0.9646。  相似文献   

6.
在集成学习领域,传统的动态集成选择需要为每一个样本选择子分类器组成集成分类器,这极大地增加了计算复杂度。针对这一问题,提出一种新的半动态集成选择方法。该方法分为两阶段,第一阶段为所有的测试样本选择最好的个体分类器组成一个集成分类器,第二阶段从剩余的个体分类器集合中为当前测试样本动态地选择子分类器组成一个集成分类器。最终的分类结果通过融合两阶段得到集成分类器的结果得到。通过对UCI数据测试的结果表明,该算法不仅能取得较好的分类性能,而且能极大地降低计算复杂度。  相似文献   

7.
基于MNF和SVM的高光谱遥感影像分类研究   总被引:3,自引:0,他引:3  
通过分析高光谱遥感影像分类的现状及遇到的困难,以OMIS1高光谱数据为实验数据,提出了基于最小噪声分离(Minimum Noise Fraction-MNF)变换和支持向量机(Support Vector Machine-SVM)的高光谱遥感影像分类方法。分类实验结果表明:与传统的最大似然分类法(Maxi mum Likelihood Classification-MLC)比较,该方法克服了Hughes现象,分类速度得以提高,总体分类精度达到94.85%,从而表明了该方法用于高光谱遥感影像分类的实用性和优越性。  相似文献   

8.
传统高光谱遥感影像逐像素分类方法未考虑像元之间的空间关联性且泛化性能较低。形态学属性剖面是表征影像空间结构的有效方法,同时集成学习可显著提升分类算法的泛化能力。为了在高光谱影像分类中充分利用影像的空间信息并提高分类的稳定性,提出一种基于形态学属性剖面高光谱遥感影像集成学习分类方法。首先,用主成分分析和最小噪声变换进行特征提取,并借助形态学属性剖面获取影像的多重空间特征;然后用极限学习和支持向量机的方法进行分类;最后将多个分类结果以多数投票的方式集成。区别于已有集成学习方法,综合考虑了不同特征提取和不同分类方法的联合集成,并将形态学属性剖面引入其中以充分利用影像的空间信息。采用AVIRIS和ROSIS两组高光谱数据检验该方法的分类性能,实验结果表明该方法可获得高精度和高稳定性的分类结果,总体精度分别达到83.41%和95.14%。  相似文献   

9.
为了充分利用高光谱图像的光谱信息和空间结构信息,提出了一种新的基于随机森林的高光谱遥感图像分类方法,首先,利用主成分分析降低数据的维数,并对主成分进行独立成分分析提取其光谱特征,同时消除像元的空间相关性,再采用形态学分析提取像元的空间结构特征,然后,根据像元的谱域和空域特征分别构造随机森林,并引入空间连续性对像元点的预测结果进行约束修正,最后由投票机制决定最后的分类结果。在AVIRIS和ROSIS高光谱图像上的实验结果表明,所提方法的分类性能要优于传统的高光谱图像分类方法,且分类精度高于基于单一特征的方法。  相似文献   

10.
近年来,协同表示分类(Collaborative Representation Classification,CRC)算法成为高光谱遥感影像分类的研究热点,尤其是切空间协同表示分类(Tangent Space Collaborative Representation,TCRC)利用切平面估计测试样本的局部流形,其分类精度得到了显著提高。为进一步提升高光谱遥感影像分类的准确性和可靠性,提出了基于Boosting的高光谱遥感影像切空间协同表示分类算法(Boosting-based Tangent Space Collaborative Representation Classification,Boost TCRC)。Boost TCRC算法采用TCRC算法作为基分类器,通过Boosting原理自适应地调整训练样本的权重,增大错分样本的权重从而使得分类器专注于较难分类的训练样本,然后在基于残差域融合时根据基分类器的分类表现赋予其权重,最终采用最小重构误差的原则对测试样本进行分类。实验采用HyMap(Hyperspectral Mapper)和AVIRIS(Airbone Visible Infrared Imaging Spectrometer)等高光谱遥感影像数据对所提出算法的性能进行了综合评价,结果表明:基于Boosting的集成方式可有效提升TCRC算法的分类效果。针对HyMap数据,Boost TCRC算法总体分类精度和Kappa系数分别为93.73%和0.920 8,两种精度指标分别高于TCRC算法2.82%和0.032 3,同时分别高于AdaBoost ELM算法1.81%和0.022 5。对于AVIRIS数据,Boost TCRC算法总体分类精度和kappa系数为84.11%和0.812 0,两种精度指标分别高于TCRC算法3.97%和0.049 3,同时分别高于AdaBoost ELM算法12.02%和0.143 6。  相似文献   

11.
Constructing support vector machine ensemble   总被引:30,自引:0,他引:30  
Hyun-Chul  Shaoning  Hong-Mo  Daijin  Sung 《Pattern recognition》2003,36(12):2757-2767
Even the support vector machine (SVM) has been proposed to provide a good generalization performance, the classification result of the practically implemented SVM is often far from the theoretically expected level because their implementations are based on the approximated algorithms due to the high complexity of time and space. To improve the limited classification performance of the real SVM, we propose to use the SVM ensemble with bagging (bootstrap aggregating) or boosting. In bagging, each individual SVM is trained independently using the randomly chosen training samples via a bootstrap technique. In boosting, each individual SVM is trained using the training samples chosen according to the sample's probability distribution that is updated in proportional to the errorness of the sample. In both bagging and boosting, the trained individual SVMs are aggregated to make a collective decision in several ways such as the majority voting, least-squares estimation-based weighting, and the double-layer hierarchical combining. Various simulation results for the IRIS data classification and the hand-written digit recognition, and the fraud detection show that the proposed SVM ensemble with bagging or boosting outperforms a single SVM in terms of classification accuracy greatly.  相似文献   

12.
章少平  梁雪春 《计算机应用》2015,35(5):1306-1309
传统的分类算法大都建立在平衡数据集的基础上,当样本数据不平衡时,这些学习算法的性能往往会明显下降.对于非平衡数据分类问题,提出了一种优化的支持向量机(SVM)集成分类器模型,采用KSMOTE和Bootstrap对非平衡数据进行预处理,生成相应的SVM模型并用复合形算法优化模型参数,最后利用优化的参数并行生成SVM集成分类器模型,采用投票机制得到分类结果.对5组UCI标准数据集进行实验,结果表明采用优化的SVM集成分类器模型较SVM模型、优化的SVM模型等分类精度有了明显的提升,同时验证了不同的bootNum取值对分类器性能效果的影响.  相似文献   

13.
综合纹理特征的高光谱遥感图像分类方法   总被引:1,自引:0,他引:1  
吴昊 《计算机工程与设计》2012,33(5):1993-1996,2006
提出了一种基于Gabor滤波的高光谱遥感图像支持向量机(SVM)分类方法,通过将Gabor滤波器组产生的纹理特征引入SVM分类,不仅充分利用了SVM适于解决高维数据分类问题的优势,而且在分类过程中实现了空间结构信息和光谱信息的综合使用,有效利用了高光谱图像“图谱合一”的特性.采用中科院上海技术物理研究所研制的模块化成像光谱仪OMIS (operative modular imaging spectrometry)真实数据进行的实验,实验结果表明,该方法提高了分类效果,分类结果更具有空间连贯性,并且能有效地克服噪声的影响.  相似文献   

14.
支持向量机已经被成功应用于遥感图像分类。一种新型具有良好特性的支持向量机--全间隔自适应模糊支持向量机被提出。这种新型的支持向量机具有通过训练集的模糊性来增强泛化能力;对不平衡训练集具有自适应性,对正负数据采用不同的损失算法,可以提高正确分类率;通过引进全间隔算法来代替软间隔算法,可以得到更低的泛化误差等优良特性,符合遥感图像数据的内在规律。并且运用实值遗传算法对其进行参数优选,得到一种新的分类器——AGATAFSVM。最后将该分类器应用于遥感图像分类。实验结果表明,该分类器非常适用于遥感图像分类,分类精度和稳定性明显高于径向基神经网络分类器、 最近邻分类器和标准支持向量机。  相似文献   

15.
基于支持向量机的遥感影像湿地信息提取研究*   总被引:1,自引:0,他引:1  
以ETM 影像数据为例,采用基于支持向量机的方法对黄河中上游区域湿地信息进行提取,并将该方法与传统的最大似然分类提取方法以及面向对象的提取方法进行对比分析。结果表明:基于支持向量机方法的提取精度高达93.57%,Kappa系数也超过了0.9,比单纯的最大似然分类方法或者面向对象的方法提取精度高得多,而且该方法操作性和实用性也很强。  相似文献   

16.
目的 受到传感器光谱响应范围的影响,可见光区域和近红外区域(400~2 500 nm)的高光谱数据通常使用不同的感光芯片进行成像,现有这一光谱区域典型的高光谱成像系统,如AVIRIS (airborne visible infrared imaging spectrometer)成像光谱仪,通常由多组感光芯片组成,整个成像系统成本和体积通常比较大,严重限制了该谱段高光谱探测技术的发展。为了能够扩展单感光芯片成像系统获得的高光谱图像的光谱范围,本文探索基于卷积神经网络的近红外光谱数据预测技术。方法 结合AVIRIS成像光谱仪的光谱配置,设计了基于残差学习的红外谱段图像预测网络,利用计算成像的方式从可见光范围的高光谱图像预测出近红外波段的光谱图像,并在典型的卫星高光谱遥感数据上进行红外光谱预测重构和基于重构的数据分类实验,以验证论文提出的红外光谱数据预测技术的可行性以及有效性。结果 本文设计的预测网络在Cuprite数据集上得到的预测近红外图像峰值信噪比为40.145 dB,结构相似度为0.996,光谱角为0.777 rad;在Salinas数据集上得到的预测近红外图像峰值信噪比为39.55 dB,结构相似性为0.997,光谱角为1.78 rad。在分类实验中,相比于只使用可见光图像,利用预测的近红外图像使得支持向量机(support vector machine,SVM)的准确率提升了0.6%,LeNet的准确率提升了1.1%。结论 基于AVIRIS传感器获取的两组典型卫星高光谱数据实验表明,本文提出的红外光谱数据预测技术不仅可基于计算成像的方式扩展可见光光谱成像系统的光谱成像范围,对于减小成像系统体积和质量具有重要意义,而且可有效提高可见光区域光谱图像数据在典型应用中的处理性能,对于提高高光谱数据处理精度提供新的技术支撑。  相似文献   

17.
王静  何建农 《计算机应用》2012,32(10):2832-2835
为了提高遥感图像的分类精度和识别速度,提出了一种基于K型支持向量机(SVM)的遥感图像分类新算法,该算法将灰度共生矩阵提取的纹理特征与光谱特征相结合进行分类。对两组Landsat ETM+数据进行分类仿真实验,结果表明,在多光谱遥感图像的分类中,新算法提高了分类效率、分类精度和泛化能力,K型SVM是一种优于径向基函数SVM的分类器。  相似文献   

18.
目的 高光谱图像包含了丰富的空间、光谱和辐射信息,能够用于精细的地物分类,但是要达到较高的分类精度,需要解决高维数据与有限样本之间存在矛盾的问题,并且降低因噪声和混合像元引起的同物异谱的影响。为有效解决上述问题,提出结合超像元和子空间投影支持向量机的高光谱图像分类方法。方法 首先采用简单线性迭代聚类算法将高光谱图像分割成许多无重叠的同质性区域,将每一个区域作为一个超像元,以超像元作为图像分类的最小单元,利用子空间投影算法对超像元构成的图像进行降维处理,在低维特征空间中执行支持向量机分类。本文高光谱图像空谱综合分类模型,对几何特征空间下的超像元分割与光谱特征空间下的子空间投影支持向量机(SVMsub),采用分割后进行特征融合的处理方式,将像元级别转换为面向对象的超像元级别,实现高光谱图像空谱综合分类。结果 在AVIRIS(airbone visible/infrared imaging spectrometer)获取的Indian Pines数据和Reflective ROSIS(optics system spectrographic imaging system)传感器获取的University of Pavia数据实验中,子空间投影算法比对应的非子空间投影算法的分类精度高,特别是在样本数较少的情况下,分类效果提升明显;利用马尔可夫随机场或超像元融合空间信息的算法比对应的没有融合空间信息的算法的分类精度高;在两组数据均使用少于1%的训练样本情况下,同时融合了超像元和子空间投影的支持向量机算法在两组实验中分类精度均为最高,整体分类精度高出其他相关算法4%左右。结论 利用超像元处理可以有效融合空间信息,降低同物异谱对分类结果的不利影响;采用子空间投影能够将高光谱数据变换到低维空间中,实现有限训练样本条件下的高精度分类;结合超像元和子空间投影支持向量机的算法能够得到较高的高光谱图像分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号