首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procollagen and proteoglycan biosynthesis was defined in long-term culture of a human osteogenic sarcoma cell line, SAOS-2. An osteoblast phenotype was maintained by these cells up to 40 days post-confluent in the presence of ascorbic acid. Under these conditions, cells deposited around them an extensive collagenous matrix that was able to mineralize in the presence of an exogenous phosphate donor (beta-glycerophosphate). The collagenous matrix was comprised predominantly of collagen type I with significant amounts of collagen type V, and greater than 80% of the collagen in the matrix was involved in covalent crosslinkages. With increasing time in culture there was a decrease in the collagen synthetic rate, although the collagenous matrix was maintained. The proteoglycans synthesized by nonmineralizing and mineralizing cultures were purified after biosynthetic labeling with [35S]sulfate and [3H]glucosamine. Two major species were apparent: a large chondroitin sulfate proteoglycan (CSPG), and a small chondroitin sulfate proteoglycan, decorin. In nonmineralizing cultures, decorin partitioned equally between the cell layer and culture medium, whereas the large CSPG species partitioned exclusively into the cell layer-associated matrix. In the presence of extensive mineral deposition, greater than 90% of the newly synthesized proteoglycans were secreted into the medium. Northern blot hybridization indicated that SAOS-2 cells express mRNA encoding a range of bone proteins, including decorin, osteonectin, and bone sialoprotein.  相似文献   

2.
Synthesis of the large dermatan sulfate (DS) proteoglycan by rat ovarian granulosa cells was studied using metabolic radiolabel precursors in culture media with varying concentrations of environmental sulfate (20-800 microM) and cysteine (130 and 650 microM). Experiments using [3H]glucosamine and [35S]sulfate showed that the average size of the DS chains and the rate of DS proteoglycan synthesis were independent of the sulfate and cysteine concentrations in the medium. Experiments with [35S]cysteine were then used to determine the contribution that metabolic conversion of cysteine sulfur to sulfate makes to the 3'-phosphoadenosine 5'-phosphosulfate (PAPS) pool which provides the substrate for sulfoester formation in DS synthesis. When 35S in cysteine is metabolized into [35S]PAPS, the specific activity is reduced from that of the [35S]cysteine pool, by dilution with other sulfur sources such as extracellular sulfate, and this dilution factor directly reflects the contribution of cysteine to the PAPS pool. The decreases of 35S specific activity were measured under various sulfate-depleted and cysteine-supplemented conditions by comparing the specific activity of [35S]sulfate ester in the DS chains with that of [35S]cysteine residues in the core protein of the DS proteoglycan. The contribution of sulfur in cysteine to the intracellular PAPS pool was 0.03% in culture medium with normal sulfate (800 microM). Depleted environmental sulfate (20 microM) and increased cysteine supply (650 microM) only increased the sulfur contribution from cysteine to PAPS up to 0.74 and 1.5%, respectively, even though the DS chains were greatly undersulfated (55 and 82% of the control value). Thus, the source of sulfur in the intracellular pool of PAPS was mainly derived from environmental sulfate, and the contribution from cysteine was minimal in these cells.  相似文献   

3.
Undifferentiated HT29 and differentiated HT29G-human colon carcinoma cells have been used to study the changes in proteoglycan production and structure associated with enterocytic cell differentiation. Differentiated cells incorporate twice as much sulfate than undifferentiated cells when labeled with [35S]sulfate. Both cell lines produce a heparan sulfate proteoglycan which was purified by ion-exchange. The heparan sulfate proteoglycan from differentiated HT29G- cells is larger and more homogeneous in size than that produced by undifferentiated HT29 cells. No differences in the core protein structure were observed. The detailed structural analysis of the heparan sulfate chains revealed that the structure of these chains follows the standard rules for these glycosaminoglycans with N-sulfated domains and N-acetylated domains. The main finding was that differentiated HT29G- cells have a degree of higher sulfation than HT29 cells. These differences were found to affect primarily 6-O-sulfated positions.  相似文献   

4.
Complexing of fibronectin glycosaminoglycans and collagen   总被引:5,自引:0,他引:5  
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20-40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit. The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfate heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads. It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

5.
Wingless, the Drosophila homologue of the proto-oncogene Wnt-1, encodes a secreted glycoprotein that regulates differentiation and proliferation of nearby cells. Here we report on the biochemical mechanism(s) by which the wingless signal is transmitted from cell to cell. When expressed in S2 cells, the majority (approximately 83%) of secreted wingless protein (WG) is bound to the cell surface and extracellular matrix through specific, noncovalent interactions. The tethered WG can be released by addition of exogenous heparan sulfate and chondroitin sulfate glycosaminoglycans. WG also binds directly to heparin agarose beads with high affinity. These data suggest that WG can bind to the cell surface via naturally occurring sulfated proteoglycans. Two lines of evidence indicate that extracellular glycosaminoglycans on the receiving cells also play a functional role in WG signaling. First, treatment of WG-responsive cells with glycosaminoglycan lyases reduced WG activity by 50%. Second, when WG-responsive cells were preincubated with 1 mM chlorate, which blocks sulfation, WG activity was inhibited to near-basal levels. Addition of exogenous heparin to the chlorate-treated cells was able to restore WG activity. Based on these results, we propose that WG belongs to the group of growth factor ligands whose actions are mediated by extracellular proteoglycan molecules.  相似文献   

6.
Cell nuclei of mouse hepatoma contain various proteoglycans (PG) which include heparan sulfate proteoglycan (HS-PG), dermatan sulfate proteoglycan (DS-PG), and chondroitin sulfate proteoglycan (CS AC-PG). The latter is not found in cell nuclei of normal mouse liver. Heparan sulfate (HS) and dermatan sulfate (DS) are the main constituents of carbohydrate chains of nuclear proteoglycans of tumor and normal cells, respectively. Changes in the composition of nuclear PG during malignant transformation are discussed considering the concept of their possible involvement in the regulation of cell mitotic activity.  相似文献   

7.
ARH-77 cells do not adhere to type I collagen and readily invade into collagen gels, but following expression of the transmembrane heparan sulfate proteoglycan syndecan-1, they bind collagen and fail to invade. We now show that cells transfected with syndecan-2 or syndecan-4 also bind collagen and are non-invasive. In contrast, cells transfected with the glycosylphosphatidylinositol-anchored proteoglycan glypican-1 do not bind to collagen and remain invasive, even though glypican- and syndecan-expressing cells have similar surface levels of heparan sulfate, and their proteoglycans have similar affinities for collagen. Analysis of cells expressing syndecan-1-glypican-1 chimeric proteoglycans reveals that inhibition of invasion requires the extracellular domain of syndecan but not its transmembrane or cytoplasmic domain. Surprisingly, cells bearing a chimera composed of the glypican extracellular domain fused to the syndecan transmembrane and cytoplasmic domains bind to collagen but remain invasive, implying that adhesion to collagen is not by itself sufficient to inhibit invasion. Apparently, the extracellular domain of syndecan-1, presumably by interacting with cell-surface signal transducing molecules, directly regulates complex cell behaviors such as motility and invasiveness. These results also show for the first time that syndecans and glypicans can have distinct functions, even when expressed by the same cell type.  相似文献   

8.
The role of heparin or heparan sulfates in the interaction of basic fibroblast growth factor (bFGF) with its high affinity receptor were investigated using purified extracellular ligand-binding region of FGF receptor-1 (FGFR-1) and intact receptors expressed in a myeloid cell line (32D) that does not express detectable levels of heparan sulfate proteoglycans or in Chinese hamster ovary (CHO) cell mutants defective in heparan sulfate synthesis. The purified extracellular domain of FGFR-1 formed complexes with 125I-bFGF both in the presence or absence of heparin. Intact FGFR-1 expressed in 32D cells also bound the same amount of 125I-bFGF in the presence or absence of heparin when saturating concentrations of bFGF were used. Varying the concentration of 125I-bFGF showed that heparin increased the amount of 125I-bFGF bound at low bFGF concentrations and increased the affinity of bFGF for its receptor by about 3-fold. To eliminate the possibility of alteration of bFGF properties through the chemical modification reactions, bFGF was labeled biosynthetically. The binding of biosynthetically labeled bFGF to FGFR-1 also did not require heparin. When FGFR-1 or FGFR-2 were expressed in mutant CHO cells deficient in heparan sulfate synthesis, the cells also bound 125I-bFGF in the absence of heparin, and the addition of heparin increased the affinity of bFGF for its receptors 2-3-fold. Thus, heparin or heparan sulfate is not required for the binding of bFGF to its receptors but increases the binding affinity to a moderate degree. Finally, the requirement for heparin in signal transduction through the receptor was investigated. Expression of c-fos mRNA was induced by bFGF in 32D cells expressing FGFR-1 to the same extent in the presence or absence of heparin.  相似文献   

9.
Expansion of the glomerular mesangium is a consistent finding of diabetic nephropathy. Negatively charged proteoglycans are an integral part of the mesangium and their synthesis and degradation is disturbed in many forms of glomerulosclerosis. The metabolism of ascorbic acid (AA), which plays an important role in extracellular matrix regulation, is known to be abnormal in diabetes. The action of AA has also been shown to be inhibited by high glucose (HG) concentration. In this study we investigated the effect of AA and HG on proteoglycan (PG) synthesis by examining the incorporation of [35S] sulphate into PG in the cellular, matrix and media components of rat mesangial cell (MC) cultures. MC were grown in 9 or 25 mM glucose for 8 days, with and without the addition of AA. Sulphation of PG was measured by adding 50 microCi of [35S] sulphuric acid to the culture medium and precipitating 35S-labelled PG with cetylpyridinium chloride. In this study AA was shown to have a stimulatory effect on the overall incorporation of [35S] sulphate into cell and matrix PG and this was inhibited by 25 mM glucose. Correcting for protein synthesis and specific activity of [35S] sulphate showed that HG inhibits AA stimulation by decreasing sulphation of the individual PG molecules. These findings may be of particular importance in the pathophysiology of nephropathy in diabetes, a condition where AA concentration is already compromised.  相似文献   

10.
The movement of neural crest cells is controlled in part by extracellular matrix. Aggrecan, the chondroitin sulfate proteoglycan from adult cartilage, curtails the ability of neural crest cells to adhere, spread, and move across otherwise favorable matrix substrates in vitro. Our aim was to isolate, characterize, and compare the structure and effect on neural crest cells of aggrecan and proteoglycans purified from the tissues through which neural crest cells migrate. We metabolically radiolabeled proteoglycans in E2.5 quail embryos and isolated and characterized proteoglycans from E3.3 quail trunk and limb bud. The major labeled proteoglycan was highly negatively charged, similar in hydrodynamic size to chick limb bud versican/PG-M, smaller than adult cartilage aggrecan but larger than reported for embryonic sternal cartilage aggrecan. The molecular weight of the iodinated core protein was about 400 kDa, which is more than reported for aggrecan but less than that of chick versican/PG-M. The proteoglycan bore chondroitin sulfate glycosaminoglycan chains of 45 kDa, which is larger than those of aggrecan. It lacked dermatan sulfate, heparan sulfate, or keratan sulfate chains. It bound to collagen type I, like aggrecan, but not to fibronectin (unlike versican/PG-M), collagen type IV, or laminin-1 in solid-phase assays and it bound to hyaluronate in gel-shift assays. When added at concentrations between 10 and 30 microg/ml to substrates of fibronectin, trunk proteoglycan inhibited neural crest cell spreading and migration. Attenuation of cell spreading was shown to be the most sensitive and titratable measure of the effect on neural crest cells. This effect was sensitive to digestion with chondroitinase ABC. Similar cell behavior was also produced by aggrecan and the small dermatan sulfate proteoglycan decorin; however, 30-fold more aggrecan was required to produce an effect of similar magnitude. When added in solution to neural crest cells which were already spread and migrating on fibronectin, the embryonic proteoglycan rapidly and reversibly caused complete rounding of the cells, being at least 30-fold more potent than aggrecan in this activity.  相似文献   

11.
BACKGROUND AND OBJECTIVES: Proteoglycans of the extracellular matrix are vital to the growth and evolution of malignant neoplasms. The present study determined the composition of proteoglycans isolated from paired specimens of normal breast and adenocarcinoma of the breast harvested from each patient (n = 8). The proteoglycans were then tested for their ability to stimulate endothelial cell proliferation. METHODS: Proteoglycans were isolated by extraction with 4 M guanidine hydrochloride and purified by CsCl density-gradient centrifugation. The proteoglycans were characterized and tested for their ability to simulate endothelial cell proliferation. RESULTS: In each case, the total proteoglycan content of the tumor was significantly greater than that of the corresponding normal tissue. The proteoglycans isolated from the carcinoma contained 32.2% (13.7/42.5) more chondroitin sulfate, 18.5% (5.6/30.2) less dermatan sulfate, and 29.6% (8.1/27.3) less heparan sulfate than did the proteoglycans of normal breast tissue. Proteoglycans from normal tissue did not stimulate endothelial cell proliferation, whereas those from malignant tissue stimulated proliferation by 1.3- to 1.5-fold. CONCLUSIONS: These results indicate that malignant breast tissue exhibits both qualitative and quantitative changes in proteoglycan composition, which, in turn, may stimulate endothelial cell proliferation.  相似文献   

12.
We mapped the distribution of neuregulin and its transmembrane precursor in developing, embryonic chick and mouse spinal cord. Neuregulin mRNA and protein were expressed in motor and sensory neurons shortly after their birth and levels steadily increased during development. Expression of the neuregulin precursor was highest in motor and sensory neuron cell bodies and axons, while soluble, released neuregulin accumulated along early motor and sensory axons, radial glia, spinal axonal tracts and neuroepithelial cells through associations with heparan sulfate proteoglycans. Neuregulin accumulation in the synaptic basal lamina of neuromuscular junctions occurred significantly later, coincident with a reorganization of muscle extracellular matrix resulting in a relative concentration of heparan sulfate proteoglycans at endplates. These results demonstrate an early axonal presence of neuregulin and its transmembrane precursor at developing synapses and a role for heparan sulfate proteoglycans in regulating the temporal and spatial sites of soluble neuregulin accumulation during development.  相似文献   

13.
Phospholipase A2 acting on low density lipoproteins in the extracellular arterial intima may form proinflammatory lipid mediators. Human nonpancreatic secretory phospholipase A2 has three regions that may associate with sulfated glycosaminoglycans. The apoB-100 molecule in low density lipoproteins also has glycosaminoglycan binding regions that could mediate its retention in the arterial intima. Here we report that human nonpancreatic phospholipase A2 isolated from a transfected cell line binds to glycosaminoglycans secreted by cultured human arterial smooth muscle cells. A gel mobility shift assay showed that the affinity of phospholipase A2 for glycosaminoglycans from a heparan sulfate/chondroitin sulfate proteoglycan was higher than for chondroitin sulfate glycosaminoglycans from a larger versican-like proteoglycan. Affinity chromatography confirmed these results. All glycosaminoglycans tested, at concentrations up to 100 microM, increased the activity of phospholipase A2 toward phosphatidylcholine liposomes. Above this concentration, heparan sulfate and heparin inhibited the enzyme. Heparin and chondroitin 6-sulfate increased phospholipase A2 activity on low density lipoproteins up to 4-fold at 100 microM, whereas heparan sulfate had no effect. The results indicate that human nonpancreatic secretory phospholipase A2 interacts with proteoglycans via their glycosaminoglycan moiety and that the enzyme activity may be modulated by the association of the enzyme and its substrate to the sulfated polysaccharides.  相似文献   

14.
Glycosaminoglycans synthesized by human skin fibroblasts were simultaneously radiolabelled with D-[1-(3H)]glucosamine and Na2(35)SO4. Considering 3H incorporation, we found that IFNgamma increased the production of glycosaminoglycan synthesis, including hyaluronic acid, heparan and chondroitin/dermatan sulfate. In contrast, the production of heparan and chondroitin/dermatan sulfate was slightly decreased on the basis of the 35S signal. Furthermore, when heparan sulfate was treated with nitrous acid, the release of free 35S was greater in control than in treated cells, although the 3H patterns of depolymerization with this agent were similar. These data demonstrate that IFNgamma inhibits the incorporation of sulfate from extracellular medium into heparan sulfate.  相似文献   

15.
The factors controlling cationic liposome-DNA complex (CLDC)-based gene transfer in cells and in animals are poorly understood. We found that cell surface heparin/heparan sulfate-bearing proteoglycans mediate CLDC-based gene transfer and expression both in cultured cells and following intravenous gene delivery into animals. CLDC did not transfect Raji cells, which lack proteoglycans, but did efficiently transfect Raji cells stably transfected with the proteoglycan, syndecan-1. Fucoidan, heparin, or dextran sulfate, all of which are highly anionic polysaccharides, each blocked CLDC-mediated transfection both in cultured cells and following intravenous injection into mice, but had no effect on transfection by either recombinant adenovirus infection or electroporation. Intravenous pretreatment of mice with heparinases, which specifically cleave heparan sulfate molecules from cell surface proteoglycans, blocked intravenous, CLDC-mediated transfection in mice, confirming that proteoglycans mediate CLDC gene delivery in vivo. Modulation of proteoglycan expression may prove useful in controlling the efficiency of, as well as targeting the sites of, CLDC-based gene transfer in animals.  相似文献   

16.
Exposure of progenitor cells with chondrogenic potential to recombinant human osteogenic protein-1 [rhOP-1, or bone morphogenetic protein-7 (BMP-7] may be of therapeutic interest in the regeneration of articular cartilage. Therefore, in this study, we examined the influence of rhOP-1 on cartilage formation by human perichondrium tissue containing progenitor cells with chondrogenic potential in vitro. Fragments of outer ear perichondrium tissue were embedded in clotting autologous blood to which rhOP-1 had been added or not (controls), and the resulting explant was cultured for 3 weeks without further addition of rhOP-1. Cartilage formation was monitored biochemically by measuring [³5;S]sulfate incorporation into proteoglycans and histologically by monitoring the presence of metachromatic matrix with cells in nests. The presence of rhOP-1 in the explant at the beginning of culture stimulated [³5;S]sulfate incorporation into proteoglycans in a dose-dependent manner after 3 weeks of culture. Maximal stimulation was reached at 40 microgram/ml. Histology revealed that explants treated with 20-200 microgram/ml rhOP-1, but not untreated control explants, contained areas of metachromatic-staining matrix with chondrocytes in cell nests. These results suggest that rhOP-1 stimulates differentiation of cartilage from perichondrium tissue. The direct actions of rhOP-1 on perichondrium cells to stimulate chondrocytic differentiation and production of cartilage matrix in vitro provide a cellular mechanism for the induction of cartilage formation by rhOP-1 in vivo. Thus, rhOP-1 may promote early steps in the cascade of events leading to cartilage formation. Therefore, rhOP-1 could be an interesting factor for regeneration of cartilage in articular cartilage defects.  相似文献   

17.
Heparan sulfate is a molecule that possesses a large structural variability and which has been shown to inhibit the proliferation of fibroblasts in vitro. The aim of this study was to determine whether the anti-proliferative effects of heparan sulfate were exerted by regulation of the activity of the platelet-derived growth factor and/or of the platelet-derived growth factor receptors. Both l-iduronate-rich, anti-proliferative and the l-iduronate-poor, non-anti-proliferative heparan sulfate species, were incubated with confluent human embryonic lung fibroblasts for 24 h. The mRNA levels for PDGF-AA, PDGF-BB, and their receptors were measured. Binding studies were performed with [125I]-PDGF-BB and [125I]-EGF for 2 h at 4 degreesC in cultures preincubated with both types of heparan sulfate for 24 h. In separate experiments, cultures were incubated together with heparan sulfate and [125I]-PDGF-BB for 2 h at 4 degreesC. Increases of two- to threefold in the mRNA levels for both the alpha- and the beta-receptors of PDGF was obtained after treatment with both types of heparan sulfate, whereas the mRNA levels of both the PDGF-AA and the PDGF-BB were essentially unaffected. A sixfold increase in binding was only noted for [125I]-PDGF-BB in cultures pre-treated with the anti-proliferative heparan sulfate for 24 h, whereas no effect was noted with use of the non-anti-proliferative heparan sulfate. Incubating the [125I]-PDGF-BB and the anti-proliferative heparan sulfate together for 2 h resulted in a smaller, threefold increase in binding. This indicates that the anti-proliferative heparan sulfate both stabilizes and increases expression of the PDGF receptors. To investigate whether the increased number of PDGF receptors could affect cell activity, cells were preincubated with anti-proliferative heparan sulfate and then treated with PDGF-BB. This resulted in an increase in mitogenicity compared to cells treated only with PDGF-BB. Neither an increase in binding for [125I-EGF] nor an increase in the mitogenic response of EGF could be observed in cultures pre-treated with the anti-proliferative heparan sulfate. The results indicate that the extracellular matrix itself may regulate important biological phenomena such as cell proliferation and matrix production through affecting the expression of receptors of PDGF, which initiate both stimulatory and inhibitory signals.  相似文献   

18.
Biglycan is a small chondroitin sulfate proteoglycan found in many tissues and is structurally related to decorin, fibromodulin, and lumican. The biological function of biglycan is poorly understood, although several studies have indicated interaction with other extracellular matrix components. We have initiated studies of structural and functional domains of biglycan by transient eukaryotic expression using the vaccinia virus/T7 bacteriophage expression system. A recombinant vaccinia virus, vBGN4 encoding the mature biglycan core protein as a polyhistidine fusion protein under control of the T7 phage promoter was expressed in HT-1080 cells and UMR106 cells. The structure of the recombinant biglycan secreted by these cells was defined by analyzing molecules labeled in the presence of [35S]sulfate, [3H]glucosamine, and [35S]methionine. Glycoforms of biglycan were separated by imidazole gradient elution, under non-denaturing conditions, and comprised: a large proteoglycan form substituted with two chondroitin sulfate chains of molecular mass approximately 34 kDa (HT-1080 cells) or approximately 40 kDa (UMR106 cells); a small proteoglycan form substituted with two chondroitin sulfate chains with a median molecular mass approximately 28 kDa; and a core protein form secreted devoid of glycosaminoglycan chains. All the glycoforms were substituted with two N-linked oligosaccharides, and the disaccharide composition of the two glycosaminoglycan populations were identical. Approximately 70% of the recombinant biglycan secreted by HT-1080 cells was substituted with chondroitin sulfate chains, whereas about 50% of the biglycan expressed by UMR106 cells was substituted with chondroitin sulfate chains. Infection with vBGN4 in both HT-1080 and UMR106 cells resulted in the production of approximately 10 mg of biglycan/10(9) cells per 24 h. The native recombinant biglycan was shown to bind to collagen type V and the complement protein, C1q. However, when the secondary structure of recombinant biglycan was disrupted by exposure to 4 M guanidine hydrochloride, the affinity for collagen type V was dramatically reduced. These data demonstrate the importance of secondary structure to the function of this small proteoglycan.  相似文献   

19.
20.
The effect of the plasminogen activator Pla of Yersinia pestis on the adhesiveness of bacteria to the mammalian extracellular matrix was determined. Y. pestis KIM D27 harbors the 9.5-kb plasmid pPCP1, encoding Pla and pesticin; the strain efficiently adhered to the reconstituted basement membrane preparation Matrigel, to the extracellular matrix prepared from human lung NCI-H292 epithelial cells, as well as to immobilized laminin. The isogenic strain Y. pestis KIM D34 lacking pPCP1 exhibited lower adhesiveness to both matrix preparations and to laminin. Both strains showed weak adherence to type I, IV, and V collagens as well as to human plasma and cellular fibronectin. The Pla-expressing recombinant Escherichia coli LE392(pC4006) exhibited specific adhesiveness to both extracellular matrix preparations as well as to laminin. The Pla-expressing strains showed a low-affinity adherence to another basement membrane component, heparan sulfate proteoglycan, but not to chondroitin sulfate proteoglycan. The degradation of radiolabeled laminin, heparan sulfate proteoglycan, or human lung extracellular matrix by the Pla-expressing recombinant E. coli required the presence of plasminogen, and degradation was inhibited by the plasmin inhibitors aprotinin and alpha2-antiplasmin. Our results indicate a function of Pla in enhancing bacterial adhesion to extracellular matrices. Y. pestis also exhibits a low level of Pla-independent adhesiveness to extracellular matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号