首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用熔体接触反应法制备了TiC/Al-4.5Cu复合材料,通过光学显微镜、透射电镜等,对TiC颗粒增强Al-4.5Cu原位复合材料的相结构进行分析。结果表明,5%TiC/Al-4.5Cu原位复合材料的主要增强相为TiC;TiC弥散分布在α-Al基体中,与基体结合良好且界面光滑。在5TiC/Al—4.5Cu原位复合材料中TiC呈球形或近球形,颗粒细小,其尺寸约为0.1~0.5μm;而在5%TiC/Al—4.5Cu—XMg原位复合材料中TiC呈规则六边形,颗粒较大,其尺寸约为0.5~0.8μm。  相似文献   

2.
采用接触反应法制备了原位TiC/Al-4.5Cu复合材料,借助光学显微镜、透射电子显微镜研究了向基体合金中添加不同含量的Mg对复合材料微观组织和拉伸性能的影响。结果表明:随着Mg的添加量由0.8%(质量分数,下同)增加到2.0%,TiC/Al-4.5Cu复合材料的延伸率下降,而抗拉强度在1.5%Mg时,达到极值。与同等条件下制备的不含Mg的TiC/Al-4.5Cu复合材料相比,抗拉强度提高了17.7%,但延伸率下降了17.9%。TiC颗粒的细化有助于复合材料力学性能的提高,但针状Al2CuMg相的析出阻碍了复合材料塑性的进一步提高。TiC/Al-4.5Cu-Mg复合材料中TiC颗粒尺寸为100nm左右。  相似文献   

3.
采用接触反应法制备原位颗粒增强铸造Al-12Si-4Cu复合材料,研究超声处理工艺对原位TiC和TiAl_3颗粒形貌的影响。结果表明:在铸造Al-12Si-4Cu复合材料中可以原位生成团聚态TiC颗粒、长杆状或块状TiAl_3颗粒;未经超声处理时,TiC颗粒团聚等效直径约70μm,经1500 W超声处理后,其减小到45μm;当超声处理功率增大到3000 W,TiC的团聚现象消失,颗粒均匀分散在基体中,并且长杆状TiAl_3颗粒长度减小到50~150μm,块状TiAl_3颗粒转变为相互独立的小尺寸块状。  相似文献   

4.
梁艳峰  董晟全  杨通 《铸造》2007,56(1):49-52
通过预制块在铸造Al-4.5%Cu合金熔体中的自蔓延反应,制备了TiCp/Al-4.5%Cu原位复合材料,分析了TiC形成的热力学及其原位生成过程。试验结果表明,TiCp/Al-4.5%Cu原位复合材料的拉伸性能比基体合金有大幅度地提高;原位反应生成的TiC颗粒呈小圆片状,平均直径0.15μm,与基体结合良好,无界面有害相。提出了一种新的TiC颗粒合成机制:Al依次与Ti、C发生反应生成Al3Ti和Al4C3,同时放出大量的热引发了TiC的生成;Al3Ti和Al4C3作为中间反应产物,由于热力学上的不稳定,最终被TiC取代。  相似文献   

5.
采用熔铸-原位合成法制备了TiC/7075Al复合材料并对其微观组织和凝固机制进行了研究。原位合成复合材料中的TiC颗粒以近球形为主,平均尺寸小于700 nm。随着TiC颗粒含量的增加,复合材料的晶粒尺寸明显减小,当TiC颗粒含量为8wt%时,基体晶粒尺寸可以减小至10μm左右。熔体反应过程中,随着TiC增强相颗粒含量的增加,凝固前沿的流体的粘度增加,降低了TiC颗粒的临界裹入速度,同样在反应时降低温度将增加熔体的粘度,有利于TiC颗粒的裹入。  相似文献   

6.
通过预制块在铸造Al-4.5Cu合金熔体中的自蔓延反应来制备TiCp/Al-4.5Cu复合材料,考察原位反应温度对该复合材料组织与力学性能的影响。结果表明,原位反应温度为950℃时所制备的复合材料力学性能较优;TiC颗粒呈小圆片状,与基体结合良好,无其他有害相生成。原位反应温度为900℃和1 000℃时所制备的复合材料组织中都有产生针状Al3Ti的倾向。  相似文献   

7.
利用原位反应自发渗透技术制备了组织均匀且致密度高的TiCp/Mg复合材料, 研究了原位反应温度以及碳颗粒尺寸对制备的TiCp/Mg复合材料微观组织的影响.结果表明: 当使用大尺寸碳粒子(≤100μm)时, 随着反应温度的提高, 原位生成物TiCp的含量增加, 但有残留反应物Ti和C的存在; 碳粒子尺寸减小(≤30μm)时, 原位反应较完全, 不再有残留物存在; 原位反应产物组织中, 增强相TiCp主要呈互穿网络状、颗粒状以及片状等形态; 增强相的尺寸随碳粒子尺寸的减小而减小, 在碳颗粒尺寸为1.5μm时TiC更易呈现等轴颗粒状, 尺寸约为0.5~2.0μm.  相似文献   

8.
熔铸-原位合成TiC/7075复合材料的拉伸和磨损性能   总被引:2,自引:0,他引:2  
采用熔铸-原位合成法制备TiC/7075复合材料.结果显示,TiC颗粒以近球形为主,平均尺寸小于1.0 um.拉伸性能测试发现,复合材料的延伸率虽略有降低,但其拉伸强度和屈服强度较基体7075铝合金分别提高35.8%和42.2%,表明原位形成的TiC颗粒有效地强化了基体.摩擦磨损结果显示,在9.1 N载荷下质量分数为6%TiC/7075复合材料的耐磨性高于7075铝合金,而在35.8 N载荷下复合材料的耐磨性却低于7075铝合金.并分析了外加载荷对材料耐磨性的影响.  相似文献   

9.
利用原位反应同喷射沉积工艺相结合的方法制备了TiB2/Zn-30Al-1Cu复合材料。采用光学显微镜(OM)、扫描电镜(SEM)对该复合材料的组织进行观察,并对其进行了X射线衍射测试分析。结果表明,在合理的喷射沉积工艺参数下,TiB2颗粒在基体材料中均匀分布并且尺寸小于2μm;原位反应TiB2颗粒的引入使得该复合材料的组织细化,初生富铝相α'相较多,呈细小的颗粒状形态且α'相尺寸小于2μm。  相似文献   

10.
以B4C和Ni60A粉末为预涂材料,采用氩弧熔覆技术,在Ti6Al4V合金表面原位合成TiC与TiB2增强相增强钛基复合材料涂层.运用XRD,SEM等分析手段研究了复合涂层的显微组织,利用显微硬度仪测试了复合涂层的显微硬度并用磨损试验机分析了其在室温干滑动磨损条件下的耐磨性能.结果表明,熔覆层组织主要由TiC和TiB2组成,TiC颗粒和TiB2颗粒弥散分布在基体上,TiC颗粒的尺寸为2~3μm,而呈长条状的TiB2颗粒尺寸为3~5μm.显微硬度和耐磨性测试结果表明,该复合涂层显微维氏硬度高达1200MPa左右,复合涂层的耐磨性能比Ti6Al4V基体提高约20倍.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

17.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

18.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号