首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a quantitative determination of the elemental distributions across a ∼10 nm Ga2O3/GdGaO layer with a Pt metal gate cap on top of an InGaAs/AlGaAs/GaAs substrate is presented. Some effects of annealing on the elemental distribution across the Ga2O3/GdGaO oxide layer are described. The paper also discusses the analysis of the interface GaAs/Ga2O3/GGO at a sub-nm level by high-resolution HAADF STEM imaging.  相似文献   

2.
HfO2 films were grown by atomic vapour deposition (AVD) on SiO2/Si (1 0 0) substrates. The positive shift of the flat band voltage of the HfO2 based metal-oxide-silicon (MOS) devices indicates the presence of negative fixed charges with a density of 5 × 1012 cm−2. The interface trap charge density of HfO2/SiO2 stacks can be reduced to 3 × 1011 eV−1 cm−2 near mid gap, by forming gas annealing. The extracted work function of 4.7 eV preferred the use of TiN as metal gate for PMOS transistors. TiN/HfO2/SiO2 gate stacks were integrated into gate-last-formed MOSFET structures. The extracted maximum effective mobility of HfO2 based PMOS transistors is 56 cm2/Vs.  相似文献   

3.
The effect of electrical quality of interfacial oxide on Ge MOSCAP and MOSFET characteristics is investigated. Different growth conditions are studied to optimize the interfacial layer. CV and Dit measurements are done for accurate comparison of different gate dielectric stacks. Optimized ozone oxidation process is integrated with Co-induced dopant activation to fabricate Ge N-MOSFETs. Forty percent improvement in inversion electron mobility is demonstrated with optimized GeO2 passivation. The highest electron mobility is reported in bulk Ge N-MOSFETs with GeO2/Al2O3 gate dielectric stack.  相似文献   

4.
An inversion-channel electron mobility model for InGaAs n-channel metal–oxide-semiconductor field-effect transistors (nMOSFETs) with stacked gate dielectric is established by considering scattering mechanisms of bulk scattering, Coulomb scattering of interface charges, interface-roughness scattering, especially remote Coulomb scattering and remote interface-roughness scattering. The simulation results are in good agreement with the experimental data. The effects of device parameters on degradation of electron mobility, e.g. interface roughness, dielectric constant and thickness of high-k layer/interlayer, and the doping concentration in the channel, are discussed. It is revealed that a tradeoff among the device parameters has to be performed to get high electron mobility with keeping good other electrical properties of devices.  相似文献   

5.
The effects of controlling InGaAs substrate temperature during electron beam deposition of HfO2 on electrical characteristics of W/HfO2/n-In0.53Ga0.47As capacitors are investigated. It is found that by depositing a thin HfO2 layer at the interface when substrate temperature is raised to 300 °C, frequency dispersion at depletion and accumulation conditions is reduced and interface state density is lowered regardless of the HfO2 thickness. Cross-sectional transmission electron microscopy images have revealed that the formation of mesoscopic voids in the InGaAs substrate near the interface is suppressed with HfO2deposition at 300 °C at the interface. A band diagram with an additional bulk trap energy level has been proposed to explain the frequency dispersion and conductance peaks at accumulation condition.  相似文献   

6.
本文研究了超薄EOT高K金属栅MOS电容结构的瞬时击穿特性。由于串联电阻效应的影响,MOS电容的瞬时击穿特性的面积依赖关系与理论推导不符。器件中的串联电阻可以通过对IV特性的FN拟合得到。在本文的器件结构中,经验证得到串联电阻主要是由于电极的不对称性引起的扩展电阻。本文提出一种采用串联模型对击穿分布特性进行修正的方法。修正后的瞬时击穿特性与面积的依赖关系符合泊松面积归一规律,这说明对于超薄EOT的高K金属栅结构,瞬时击穿的机制与时变击穿的机制相同,都是由缺陷产生过程导致的击穿过程。  相似文献   

7.
随着超大规模集成电路的不断发展,薄栅氧化层的质量对器件和电路可靠性的作用越来越重要.经时绝缘击穿(TDDB)是评价薄栅氧化层质量的重要方法.本文重点介绍了TDDB的几种主要击穿模型和机理,比较了软击穿和硬击穿过程的联系与区别,并初步分析了TDDB与测试电场、温度以及氧化层厚度的关系.  相似文献   

8.
薄栅氧化层的TDDB研究   总被引:2,自引:0,他引:2  
王晓泉 《微纳电子技术》2002,39(6):12-15,20
随着超大规模集成电路的不断发展,薄栅氧化层的质量对器件和电路可靠性的作用越来越重要。经时绝缘击穿(TDDB)是评价薄栅氧化层质量的重要方法。本文重点介绍了TDDB的几种主要击穿模型和机理,比较了软击穿和硬击穿过程的联系与区别,并初步分析了TDDB与测试电场、温度以及氧化层厚度的关系。  相似文献   

9.
Annealing effects on electrical characteristics and reliability of MOS device with HfO2 or Ti/HfO2 high-k dielectric are studied in this work. For the sample with Ti/HfO2 higher-k dielectric after a post-metallization annealing (PMA) at 600 °C, its equivalent oxide thickness value is 7.6 Å and the leakage density is about 4.5 × 10−2 A/cm2. As the PMA is above 700 °C, the electrical characteristics of MOS device would be severely degraded.  相似文献   

10.
A GaAs MOSFET with a semi-insulating substrate is described, operating in either the enhancement or the deed depletion modes and showing the highest transconductance reported so far, and a rise time better than 1 ns. The behavior is fully explained by theC/Vcharacteristics of equivalent MOS capacitors.  相似文献   

11.
In this paper, we compare the electrical characteristics of MOS capacitors and lateral MOSFETs with oxidized Ta2Si (O-Ta2Si) as a high-k dielectric on silicon carbide or stacked on thermally grown SiO2 on SiC. MOS capacitors are used to determine the dielectric and interfacial properties of these insulators. We demonstrate that stacked SiO2/O-Ta2Si is an attractive solution for passivation of innovative SiC devices. Ta2Si deposition and oxidation is totally compatible with standard SiC MOSFET fabrication materials and processing. We demonstrate correct transistor operation for stacked O-Ta2Si on thin thermally grown SiO2 oxides. However the channel mobility of such high-k MOSFETs must be improved investigating the interface properties further.  相似文献   

12.
The reliability characteristics of SiO2/ZrO2 gate dielectric stacks on strained-Si/Si0.8Ge0.2 have been investigated under dynamic and pulsed voltage stresses of different amplitude and frequency in order to analyze the transient response and the degradation of oxide as a function of stress parameters. The current transients observed in dynamic voltage stresses have been interpreted in terms of the charging/discharging of interface and bulk traps. The evolution of the current during unipolar pulsed voltage stresses shows the degradation being much faster at low frequencies than at high frequencies. Results have been compared with those obtained after CVS, as a function of injected charge and pulse frequency.  相似文献   

13.
The influences of the main structure and physical parameters of the dual-gate GeOl MOSFET on the device performance are investigated by using a TCAD 2D device simulator. A reasonable value range of germanium (Ge) channel thickness, doping concentration, gate oxide thickness and permittivity is determined by analyzing the on-state current, off-state current, short channel effect (SCE) and drain-induced barrier lowering (DIBL) effect of the GeOI MOSFET. When the channel thickness and its doping concentration are 10-18 nm and (5-9)×1017 cm-3, and the equivalent oxide thickness and permittivity of the gate dielectric are 0.8-1 nm and 15-30, respectively, excellent device performances of the small-scaled GeOI MOSFET can be achieved: on-state current of larger than 1475 μA/μm, off-state current of smaller than 0.1μA/μm, SCE-induced threshold-voltage drift of lower than 60 mV and DIBL-induced threshold-voltage drift of lower than 140 mV.  相似文献   

14.
The current-voltage (I-V) characteristics of metal-oxide-semiconductor (MOS) structures with hafnium oxide as the gate dielectric film were studied. Sharp shifts from a low-voltage ohmic regime to a tunneling conduction were observed in the high-voltage range. The paper demonstrates that this behavior can be described very well with a double-layer dielectric model. Excellent fittings of the experimental curves were obtained and the related key structural and physical parameters were obtained. The model fitting further suggests the optimal annealing conditions for preparing the hafnium oxide films.  相似文献   

15.
A method called strain-temperature stress was adopted in this work to improve the quality of ultra-thin oxide on both MOS(p) and MOS(n) capacitors. MOS structures were baked at 100 °C under externally applied mechanical stress. Reduced gate leakage current, reduced interface trap density (Dit), and improved time-dependent-dielectric-breakdown (TDDB) characteristics were observed after tensile-temperature stress treatment without increasing the oxide thickness. On the contrary, compressive-temperature stress resulted in a degraded performance of MOS capacitors. Consequently, the tensile-temperature stress method is suggested as a possible technique to enhance the ultra-thin oxide quality of MOS structure.  相似文献   

16.
Deposition and electrical properties of high dielectric constant (high-k) ultrathin ZrO2 films on tensilely strained silicon (strained-Si) substrate are reported. ZrO2 thin films have been deposited using a microwave plasma enhanced chemical vapor deposition technique at a low temperature (150 °C). Metal insulator semiconductor (MIS) structures are used for high frequency capacitance–voltage (CV), current–voltage (IV), and conductance–voltage (GV) characterization. Using MIS capacitor structures, the reliability and the leakage current characteristics have been studied both at room and high temperature. Schottky conduction mechanism is found to dominate the current conduction at a high temperature. Observed good electrical and reliability properties suggest the suitability of deposited ZrO2 thin films as an alternative as gate dielectrics. Compatibility of ZrO2 as a gate dielectric on strained-Si is shown.  相似文献   

17.
18.
The use of co-sputtered Zirconium Silicon Oxide (ZrxSi1−xO2) gate dielectrics to improve the performance of α-IGZO TFT is demonstrated. Through modulating the sputtering power of the SiO2 and ZrO2 targets, the control of dielectric constant in a range of 6.9–31.6 is shown. Prevention of polycrystalline formation of the ZrxSi1−xO2 film up to 600 °C annealing and its effectiveness in reducing leakage currents and interface trap density are presented. Moreover, it is revealed that the Zr0.85Si0.15O2 dielectric could lead to significantly improved TFT performance in terms of subthreshold swing (SS=81 mV/dec), field-effect mobility (μFE=51.7 cm2/Vs), and threshold voltage shift (ΔVTH=0.03 V).  相似文献   

19.
Breakdown characteristics of nFETs in inversion with metal/HfO2 gate stacks   总被引:1,自引:0,他引:1  
Time zero and time dependent dielectric breakdown (TZBD and TDDB) characteristics of atomic layer deposited (ALD) TiN/HfO2 high-κ gate stacks are studied by applying ramped and constant voltage stress (RVS and CVS), respectively, on the n-channel MOS devices under inversion conditions. For the gate stacks with thin high-κ layers (?3.3 nm), breakdown (BD) voltage during RVS is controlled by the critical electric field in the interfacial layer (IL), while in the case of thicker high-κ stacks, BD voltage is defined by the critical field in the high-κ layer. Under low gate bias CVS, one can observe different regimes of the gate leakage time evolution starting with the gate leakage current reduction due to electron trapping in the bulk of the dielectric to soft BD and eventually hard BD. The duration of each regime, however, depends on the IL and high-κ layer thicknesses. The observed strong correlation between the stress-induced leakage current (SILC) and frequency-dependent charge pumping (CP) measurements for the gate stacks with various high-κ thicknesses indicates that the degradation of the IL triggers the breakdown of the entire gate stack. Weibull plots of time-to-breakdown (TBD) suggest that the quality of the IL strongly affects the TDDB characteristics of the Hf-based high-κ gate stacks.  相似文献   

20.
By including poly-Si/SiO/sub 2/ and Si/SiO/sub 2/ interfacial transition (IFT) layers, an excellent agreement in terms of both C-V and J-V characteristics is obtained between the experiment and theory for both polarities of gate voltage (V/sub G/) for the first time. The highly precise physical models for gate depletion and gate accumulation bring an oxide thickness extracted from the C-V fitting in a negative V/sub G/ close to that extracted in a positive V/sub G/. It is shown that the physical oxide thickness should be regarded as a distance between the middle points inside the IFT layers in both sides of the gate oxide. In addition, it is found that the tunnel mass is independent of the gate-oxide thickness from 14 to 28 /spl Aring/. It is also shown that the oxide-thickness dependence of the tunnel mass , is ascribable to the C-V-J-V fitting only in the case of a negative polarity of V/sub G/ while neglecting the poly-Si/SiO/sub 2/ IFT layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号