首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Mammalian alcohol dehydrogenases ADH1 (class I ADH) and ADH4 (class IV ADH) function as retinol dehydrogenases contributing to the synthesis of retinoic acid, the active form of vitamin A involved in growth and development. Xenopus laevis ADH1 and ADH4 genes were isolated using polymerase chain reaction primers corresponding to conserved motifs of vertebrate ADHs. The predicted amino acid sequence of Xenopus ADH1 was clearly found to be an ortholog of ADH1 from the related amphibian Rana perezi. Phylogenetic tree analysis of the Xenopus ADH4 sequence suggested this enzyme is likely to be an ADH4 ortholog, and this classification was more confidently made when based also on the unique expression patterns of Xenopus ADH1 and ADH4 in several retinoid-responsive epithelial tissues. Northern blot analysis of Xenopus adult tissues indicated nonoverlapping patterns of ADH expression, with ADH1 mRNA found in small intestine, large intestine, liver, and mesonephros and ADH4 mRNA found in esophagus, stomach, and skin. These nonoverlapping tissue-specific patterns are identical to those previously observed for mouse ADH1 and ADH4, thus providing further evidence that Xenopus ADH1 and ADH4 are orthologs of mouse ADH1 and ADH4, respectively. During Xenopus embryonic development ADH1 mRNA was first detectable by Northern blot analysis at stage 35, whereas ADH4 mRNA was undetectable through stage 47. Whole-mount in situ hybridization indicated that ADH1 expression was first localized in the pronephros during Xenopus embryogenesis, thus conserved with mouse embryonic ADH1 which is first expressed in the mesonephros. ADH4 expression was not detected in Xenopus embryos by whole-mount in situ hybridization but was localized to the gastric mucosa of the adult stomach, a property shared by mouse ADH4. Conserved expression of ADH1 and ADH4 in retinoid-responsive epithelial tissues of amphibians and mammals argue that these enzymes may perform essential retinoid signaling functions during development of the pronephros, mesonephros, liver, and lower digestive tract in the case of ADH1 and in the skin and upper digestive tract in the case of ADH4.  相似文献   

2.
Two genes coding for isozymes of alcohol dehydrogenase (ADH); designated PsADH1 and PsADH2, have been identified and isolated from Pichia stipitis CBS 6054 genomic DNA by Southern hybridization to Saccharomyces cerevisiae ADH genes, and their physiological roles have been characterized through disruption. The amino acid sequences of the PsADH1 and PsADH2 isozymes are 80.5% identical to one another and are 71.9 and 74.7% identical to the S. cerevisiae ADH1 protein. They also show a high level identity with the group I ADH proteins from Kluyveromyces lactis. The PsADH isozymes are presumably localized in the cytoplasm, as they do not possess the amino-terminal extension of mitochondrion-targeted ADHs. Gene disruption studies suggest that PsADH1 plays a major role in xylose fermentation because PsADH1 disruption results in a lower growth rate and profoundly greater accumulation of xylitol. Disruption of PsADH2 does not significantly affect ethanol production or aerobic growth on ethanol as long as PsADH1 is present. The PsADH1 and PsADH2 isozymes appear to be equivalent in the ability to convert ethanol to acetaldehyde, and either is sufficient to allow cell growth on ethanol. However, disruption of both genes blocks growth on ethanol. P. stipitis strains disrupted in either PsADH1 or PsADH2 still accumulate ethanol, although in different amounts, when grown on xylose under oxygen-limited conditions. The PsADH double disruptant, which is unable to grow on ethanol, still produces ethanol from xylose at about 13% of the rate seen in the parental strain. Thus, deletion of both PsADH1 and PsADH2 blocks ethanol respiration but not production, implying a separate path for fermentation.  相似文献   

3.
The effects of vitamin A (retinol) on growth and development are mediated by the active metabolite retinoic acid which controls a nuclear receptor signaling pathway. While elegant work on the retinoic acid receptor family has focused attention upon how the receptor controls this pathway, there now exists a relatively large gap in our understanding of how retinol is activated to form the ligand. During vertebrate embryogenesis and in adult organs retinoic acid is detected in a distinct spatiotemporal pattern, suggesting that it is produced from retinol in a regulated fashion. Enzymes involved in retinol and retinal metabolism are likely candidates for regulators of tissue retinoic acid levels. Members of the alcohol dehydrogenase and short-chain dehydrogenase/reductase enzyme families catalyze the reversible interconversion of retinol and retinal, the rate-limiting step, whereas members of the aldehyde dehydrogenase and cytochrome P450 enzyme families catalyze the irreversible oxidation of retinal to retinoic acid. The identification of enzymes likely to catalyze retinol oxidation in vivo has been particularly controversial, and this is made even more difficult by the reversible nature of this reaction. Taking into account enzymatic properties and coenzyme preferences, a case can be made that class IV alcohol dehydrogenase catalyzes retinol oxidation to provide retinal for retinoic acid synthesis, whereas microsomal retinol dehydrogenase (a short-chain dehydrogenase/reductase) catalyzes the reduction of retinal to retinol to promote retinoid storage. Further studies on these enzyme families will allow this layer of control in the retinoid signaling pathway to be understood.  相似文献   

4.
Immunochemical distribution of 20beta-hydroxysteroid dehydrogenase (HSD) in neonatal pig tissues was investigated by Western blot analysis of the proteins reacting with anti-20beta-HSD antibody. 20beta-HSD was present in all organs investigated: brain, lung, thymus, submandibular gland, heart, liver, kidney, spleen, adrenal gland, testis, epididymis, prostate, vas deferens and seminal vesicle. In particular, high concentrations of 20beta-HSD were detected in the testis, followed by the kidney and liver, by the [125I]-protein A binding method. Immunohistochemical localization of the enzyme was achieved in paraffin sections of the testis, kidney, liver, epididymis, and vas deferens by the streptoavidin-biotin complex method. In the testis, very strong immunostaining was found only in interstitial Leydig cells, whereas the cells in seminiferous tubules, such as Sertoli cells and spermatogenic cells, were entirely negative. In the kidney, strong immunostaining was detected in epithelial cells of Henle's loop. The immunoreactive proteins were also localized in the hepatic lobules of the liver, tall columnar cells of the ductus epididymidis of the epididymis, and mucosal epithelium cells and muscularis of the vas deferens. These observations indicate that tissue distribution of 20beta-HSD is similar to that of carbonyl reductase in the human and rat. However, the specific and abundant expression of 20beta-HSD in testicular Leydig cells of the neonatal pig, which are concerned with the synthesis of androgens, suggests that 20beta-HSD has a very important physiological role in testicular function during the neonatal stage.  相似文献   

5.
Alcohol dehydrogenase (ADH) of acetic acid bacteria functions as the primary dehydrogenase of the ethanol oxidase respiratory chain, where it donates electrons to ubiquinone. In addition to the reduction of ubiquinone, ADHs of Gluconobacter suboxydans and Acetobacter aceti were shown to have a novel function in the oxidation of ubiquinol. The oxidation activity of ubiquinol was detected as an ubiquinol:ferricyanide oxidoreductase activity, which can be monitored by selected wavelength pairs at 273 and 298 nm with a dual-wavelength spectrophotometer. The ubiquinol oxidation activity of G. suboxydans ADH was shown to be two times higher in 'inactive ADH', whose ubiquinone reductase activity is 10 times lower, than with normal 'active' ADH. No activity could be detected in the isolated subunit II or subunit I/III complex, but activity was detectable in the reconstituted ADH complex. Inactive and active ADHs exhibited a 2-3-fold difference in their affinity to ubiquinol despite having the same affinity to ubiquinone. Furthermore, the ubiquinol oxidation site in ADH could be distinguished from the ubiquinone reduction site by differences in their sensitivity to ubiquinone-related inhibitors and by their substrate specificity with several ubiquinone analogues. Thus, the results strongly suggest that the reactions occur at different sites. Furthermore, in situ reconstitution experiments showed that ADH is able to accept electrons from ubiquinol present in Escherichia coli membranes, suggesting the ubiquinol oxidation activity of ADH has a physiological function. Thus, ADH of acetic acid bacteria, which has ubiquinone reduction activity, was shown to have a novel ubiquinol oxidation activity, of which the physiological function in the respiratory chain of the organism is also discussed.  相似文献   

6.
A cDNA encoding a new type of alcohol dehydrogenase was cloned from a human stomach cDNA library. PCR amplification of 5'-stretch human stomach lambda gt11 library, using degenerate inosine-containing oligonucleotide probes compatible with peptide sequences of human sigma-ADH, resulted in a single product. Subsequently, internal non-degenerate primers were constructed according to the sequences occurring in the product. By PCR with combinations of these new primers and lambda gt11 forward and reverse primers, fragments of the cDNA containing its 5' and 3' ends were amplified. The full length cDNA sequence has 1125 nucleotides with a 72% similarity to those of human class I ADH. The polypeptide sequence, predicted from the cDNA, corresponds to 373 amino acids with a high degree of similarity (96%) to fragments of sigma-ADH previously reported. Northern hybridization analysis with the specific probe for the mRNA of this protein showed that it is expressed in the human stomach but not in the liver. These data indicate that the cDNA we cloned is that of human class IV ADH.  相似文献   

7.
The structure of a mammalian class IV alcohol dehydrogenase has been determined by peptide analysis of the protein isolated from rat stomach. The structure indicates that the enzyme constitutes a separate alcohol dehydrogenase class, in agreement with the distinct enzymatic properties; the class IV enzyme is somewhat closer to class I (the "classical" liver alcohol dehydrogenase; approximately 68% residue identities) than to the other classes (II, III, and V; approximately 60% residue identities), suggesting that class IV might have originated through duplication of an early vertebrate class I gene. The activity of the class IV protein toward ethanol is even higher than that of the classical liver enzyme. Both Km and kcat values are high, the latter being the highest of any class characterized so far. Structurally, these properties are correlated with replacements at the active site, affecting both substrate and coenzyme binding. In particular, Ala-294 (instead of valine) results in increased space in the middle section of the substrate cleft, Gly-47 (instead of a basic residue) results in decreased charge interactions with the coenzyme pyrophosphate, and Tyr-363 (instead of a basic residue) may also affect coenzyme binding. In combination, these exchanges are compatible with a promotion of the off dissociation and an increased turnover rate. In contrast, residues at the inner part of the substrate cleft are bulky, accounting for low activity toward secondary alcohols and cyclohexanol. Exchanges at positions 259-261 involve minor shifts in glycine residues at a reverse turn in the coenzyme-binding fold. Clearly, class IV is distinct in structure, ethanol turnover, stomach expression, and possible emergence from class I.  相似文献   

8.
We used a radioactive in situ method to study expression of the RNA component of human telomerase (hTR) during normal human development and differentiation using archival tissues. In embryonic tissues, the highest and most uniform expression was present in undifferentiated neuroepithelium. Expression was stronger in immature epithelium than in accompanying immature mesenchyme. Differentiation of most tissues was accompanied by decreased or absent expression. Except for testis and adrenal, the adult pattern of expression was present by the 10th postnatal week. In adult tissues, high expression was present in the testis (primary spermatocytes and Sertoli cells), moderate expression was present in lymphoid follicles (germinal centers), and weak expression was present in epithelia (regenerative cells) but was absent in the nervous system and mesenchymal derived tissues. Expression in adult tissues was predominantly limited to dividing cells, although certain differentiated postmitotic cells expressed the hTR. Our studies demonstrate the complex interrelationship of hTR expression with human development, differentiation, and cell division.  相似文献   

9.
The isozymes of class III alcohol dehydrogenase/glutathione-dependent formaldehyde dehydrogenase from cod were characterized. They exhibited three unexpected properties of general interest. First, these dimeric isozymes, derived from two types of subunit (h and l, for high- and low-activity forms), were recovered from liver preparations in only the homodimeric ll and heterodimeric hl combinations. Dissociation and reassociation of the isolated hl form in vitro also resulted in lower yields of the hh than the ll homodimer, although class III subunits are usually freely associable over wide borders of divergence (human and Drosophila). The h and l primary structures show that both chain types are characteristic of class III enzymes, without large amino acid replacements at positions of known subunit interactions. Hence, the hh dimer partial restriction indicates nontraditional alterations at h-subunit interfaces. The structure provides a possible explanation, in the form of h-chain modifications that may influence the anchoring of a loop at positions of two potentially deamidative beta-aspartyl shifts at distant Asn-Gly structures. Second the ll and hl forms differ in enzymatic properties, having 5-fold different K(m) values for NAD+ at pH 8, different K(m) values for S-(hydroxymethyl)glutathione (10 versus 150 microM), and different specific activities (4.5 versus 41 units/mg), with ll resembling and hl deviating from human and other class III alcohol dehydrogenases. However, functional residues lining substrate and coenzyme pockets in the known conformations of homologous forms are largely identical in the two isozymes [only minor conservative exchanges of Val/Leu116, Val/Leu203, Ile/Val224, and Ile/Val269 (numbering system of the human class I enzyme)], again indicating effects from distantly positioned h-chain replacements. Third, the two isozymes differ a surprising amount in amino acid sequence (18%, the same as the piscine/ human difference), reflecting a remarkably old isozyme duplication or, more probably, discordant accumulation of residue exchanges with greater speed of evolution for one of the subunits (h chain) than is typical for the slowly evolving class III alcohol dehydrogenase.  相似文献   

10.
11.
12.
In adult life, the type 2 isozyme of 11beta-hydroxysteroid dehydrogenase (11betaHSD2) protects the mineralocorticoid receptor (MR) from glucocorticoid by inactivating cortisol to cortisone. 11betaHSD2 activity has been reported in human fetal tissues, where glucocorticoids may impair fetal growth yet are also required for normal fetal development. Using digoxigenin-labeled complementary ribonucleic acid (RNA) probes and an in-house 11betaHSD2 antiserum, we have analyzed the expression of 11betaHSD2, MR, and glucocorticoid receptor (GR) in human fetal tissues of gestational age 6-17 weeks (n=15). 11BetaHSD2 expression was absent at gestational age 6+ weeks, but was expressed in abundance in many fetal tissues between 8-12 weeks. At this time, 11betaHSD2 colocalized with GR messenger RNA (mRNA) expression in metanephros, gut, muscle, spinal cord and dorsal root ganglia, periderm, sex chords of testis, and adrenal. In particular within fetal kidney, intense expression of 11betaHSD2 and GR mRNA was observed over Bowman's capsule and the vascular tufts of developing glomeruli as they migrated from the surface of the kidney to the inner cortex. Only lung and adrenal medullary rests demonstrated high levels of GR mRNA but low levels of 11betaHSD2. 11BetaHSD2 mRNA and immunoreactivity staining patterns were similar, with the exception of the fetal adrenal, where mRNA was localized to the outer definitive zone but immunoreactivity was localized to the inner fetal zone. Colocalization of 11betaHSD2 (and GR mRNA) with MR mRNA was observed principally within epithelial cells of collecting ducts, particularly after 16 weeks gestation when the pattern of distribution of 11betaHSD2 became more adult in nature. High levels of MR mRNA were observed within developing bone. The data indicate that 11betaHSD2 in fetal life principally modulates ligand access to the GR in most fetal tissues, notably glomeruli and tubules in the developing kidney, testis, and periderm, and this may be have ramifications for fetal sodium homeostasis and differentiation. The development of tissues previously shown to have a critical requirement for glucocorticoids, such as lung and adrenal medulla, is facilitated by the expression of GR mRNA, but not 11betaHSD2. The expression of MR mRNA in high abundance in bone suggests a role for corticosteroids in human bone development, and the low/absent expression of 11betaHSD2 at this site suggests that it is functionally acting as a GR.  相似文献   

13.
14.
15.
16.
The uptake and metabolism of retinol was compared in squamous cell carcinoma lines, SCC12b and SCC13, and in normal human keratinocytes (NHK). Long chain fatty acid esters of retinol and 3,4-didehydroretinol were the predominant metabolites formed in both cell types. Lesser amounts of unesterified retinol, 3,4-didehydroretinol, and their respective active acid forms were also observed. Despite a qualitatively similar retinoid composition, there were significant quantitative differences between cell types. Most notable was that SCC formed only about one-fourth the retinoid ester as did normal cells. In parallel with this, unesterified retinol and retinoic acid concentrations in SCC were significantly elevated over those in normal cells. This altered pattern of retinoid metabolites in SCC was found to be due to very low lecithin:retinol acyltransferase (LRAT) activity. SCC exhibited less than one-tenth the LRAT activity of normal cells. Acyl-coenzyme A:retinol acyltransferase (ARAT) and retinyl ester hydrolase activities were not different between cell types. Challenging cells with increasing medium retinol concentrations resulted in dose-dependent increases in retinol and retinoic acid within SCC. In contrast, retinol and retinoic acid concentrations in similarly challenged normal cells remained relatively low across a wide retinol concentration range. This was accomplished by the storage of retinol, via LRAT activity, as retinyl ester. Consistent with increased substrate-driven retinoic acid synthesis in SCC, the expression of transglutaminase 1 was suppressed to a greater extent in the SCCs than in NHK, when cells were exposed to equivalent medium concentrations of retinol. The data demonstrate a central role of LRAT in regulating retinoic acid synthesis via its capacity to modulate cellular levels of substrate retinol.  相似文献   

17.
We have previously shown that intact plants and cultured plant cells can metabolize and detoxify formaldehyde through the action of a glutathione-dependent formaldehyde dehydrogenase (FDH), followed by C-1 metabolism of the initial metabolite (formic acid). The cloning and heterologous expression of a cDNA for the glutathione-dependent formaldehyde dehydrogenase from Zea mays L. is now described. The functional expression of the maize cDNA in Escherichia coli proved that the cloned enzyme catalyses the NAD(+)- and glutathione (GSH)-dependent oxidation of formaldehyde. The deduced amino acid sequence of 41 kDa was on average 65% identical with class III alcohol dehydrogenase from animals and less than 60% identical with conventional plant alcohol dehydrogenases (ADH) utilizing ethanol. Genomic analysis suggested the existence of a single gene for this cDNA. Phylogenetic analysis supports the convergent evolution of ethanol-consuming ADHs in animals and plants from formaldehyde-detoxifying ancestors. The high structural conservation of present-day glutathione-dependent FDH in microorganisms, plants and animals is consistent with a universal importance of these detoxifying enzymes.  相似文献   

18.
Four types of beta-galactoside alpha 2,3-sialyltransferase (ST3Gal I-IV) have been cloned from several animals, but some contradictory observations regarding their substrate specificities and expression have been reported. Therefore, it is necessary to concurrently analyze the substrate specificities of the four enzymes, of which the source should be one animal. Accordingly, the acceptor substrate specificities and gene expression of mST3Gal I-IV were analyzed. Since we had already cloned ST3Gal I and II, as previously reported (Lee, Y.-C. et al., Eur. J. Biochem., 216, 377-385 (1993); J. Biol. Chem., 269, 10028-10033 (1994)), the cDNAs of ST3Gal III and IV were cloned from mouse cDNA libraries. Each of the four enzymes was expressed in COS-7 cells as a recombinant enzyme fused with protein A, and applied on an IgG-Sepharose gel to eliminate endogenous sialyltransferase activity. ST3Gal I and II showed the highest activity toward Gal beta 1, 3 GalNAc (type III), very low activity toward Gal beta 1,3GlcNAc (type I), but none toward Gal beta 1,4GlcNAc (type II). ST3Gal III and IV exhibited high activity toward the type I and II disaccharides, but very low activity toward the type III one. On the other hand, asialo-GM1 (Gg4Cer) was as good a substrate for ST3Gal I and II as the type III disaccharide, though ST3Gal III and IV hardly utilized glycolipids as substrates, as indicated by in vitro experiments. Northern blot analysis revealed that enzymes of the ST3Gal-family are expressed mainly in a tissue-specific manner. The ST3Gal I gene was strongly expressed in spleen and salivary gland, and weakly in brain, liver, heart, kidney, and thymus. The ST3Gal II gene was strongly expressed in brain, and weakly in colon, thymus, salivary gland, and testis, and developmentally expressed in liver, heart, kidney, and spleen. The ST3Gal III and IV genes were expressed in a wide variety of tissues. These differences in tissue specific expression suggest the expression of each ST3Gal influences the distribution of sialyl-glycoconjugates in vivo.  相似文献   

19.
20.
As many as 20% of the survivors of acute myocardial infarction present with the heritable form of hyperlipidemia, termed familial combined hyperlipidemia (FCHL). Some of the genes reported to be involved in this disorder, such as those for lipoprotein lipase (LPL) and apolipoprotein (apo) C-III, are controlled by a peroxisome proliferator-activated receptor (PPAR)/retinoic acid receptor X (RXR) regulatory system, which is retinoic acid dependent. If, as we hypothesized, the availability of retinoic acid or its precursor retinol (vitamin A) could be altered in FCHL, this could help explain some aspects of the phenotypic expression of the disease. We therefore measured plasma retinol concentrations in 30 FCHL subjects and 56 controls. Plasma retinol concentrations in FCHL subjects were significantly lower than that of control subjects (1.96 +/- 0.83 mumol/L vs 2.91 +/- 1.23 mumol/L, respectively; P < 0.0001). This novel finding of significantly decreased concentrations of plasma retinol in FCHL relative to control subjects gives support to the hypothesis that vitamin A might be involved in the expression of this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号