首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friction stir processing (FSP) is emerging as a promising tool for microstructural modification. The current study assesses the effects of FSP on the microstructure and mechanical properties of an investment cast Al-7Si-Mg alloy. FSP eliminates porosity and significantly refines eutectic Si particles. The extent of particle refinement varied with changes in processing conditions. A high tool rotation rate and a low-to-intermediate tool traverse speed generated a higher volume fraction of finer particles. Tensile ductility changed significantly as a result of FSP, whereas ultimate tensile strength improved only marginally. Yield strength was similar in both cast and FSP samples under various heat-treated conditions, with the highest value obtained after a T6 heat treatment. Furthermore, FSP caused significant grain refinement in the stir zone, subsequently transforming into very coarse grains as abnormal grain growth occurred during solution treatment at high temperature.  相似文献   

2.
Friction stir processing (FSP) was applied to modify the microstructure of an as-cast A356 alloy. The effects of rotation rate, travel speed, in situ FSP pass, FSP direction, and artificial aging on microstructures and tensile properties were investigated. FSP broke up the coarse eutectic Si phase into 2.5 to 3.5 μm particles and distributed them homogeneously, and resulted in the dissolution of the coarse Mg2Si particles and the elimination of porosity, thereby improving both the strength and the ductility of the casting. Increasing the rotation rate was beneficial to breaking up and dissolving the particles, but it contributed little to eliminating the porosity. The travel speed did not affect the size of the particles apparently, but lower speed was beneficial to eliminating the porosity. 2-pass FSP showed an obvious advantage in the microstructure modification and tensile properties compared with the single-pass. However, a further increase of FSP passes only resulted in slight improvement. The FSP direction of the following pass did not show distinct effect on the microstructure and tensile properties. After post-FSP artificial aging, the strengthening phase (β″-Mg2Si) precipitated, which increased the strength and decreased the ductility of the FSP samples.  相似文献   

3.
Friction stir processing (FSP) is emerging as an effective tool for microstructural modification and property enhancement. As-cast AZ91 magnesium alloy was friction stir processed with one-pass and two-pass to examine the influence of processing conditions on microstructural evolution and corresponding mechanical properties. Grain refinement accompanied with development of strong basal texture was observed for both processing conditions. Ultrafine-grained (UFG) AZ91 was achieved under two-pass FSP with fine precipitates distributed on the grain boundary. The processed UFG AZ91 exhibited a high tensile strength of ~435 MPa (117 pct improvement) and tensile fracture elongation of ~23 pct. The promising combination of strength and ductility is attributed to the elimination of casting porosity, and high density of fine precipitates in an UFG structure with quite low dislocation density. The effects of grain size, precipitate, and texture on deformation behavior have been discussed.  相似文献   

4.
In the present investigation, the mechanical and wear properties of Al-20Si alloy processed by spray casting and vertical centrifugal casting processes have been evaluated and compared. In spray casting process the melt was gas atomized and the spray-deposited over a copper substrate. The spray-deposit exhibited considerable porosity and subjected to hot isostatic pressing to reduce the porosity from 19 to 2%. The centrifugal casting process provided cylindrical shaped preform with characteristically low porosity. The microstructure of spray cast alloy showed ultra fine and uniformly distributed primary and eutectic Si particles in the Al matrix. In contrast, a coarse polyhedral shaped morphology of the primary Si phase was observed in the microstructure of the centrifugal cast alloy. The wear rate of spray cast alloy was invariably lower than that of centrifugal cast alloy. The room temperature tensile and hardness tests of spray cast alloy showed considerable improvement in its strength, ductility and hardness over that of centrifugal cast alloy. The improvement in wear properties of spray cast alloy is discussed in the light of its microstructural modification induced by spray casting and nature of debris particles generated during wear testing.  相似文献   

5.
对7B04-O铝合金进行搅拌摩擦加工,对不同旋转速度参数下获得的7B04-O铝合金搅拌区的组织和硬度进行研究,同时利用后续热处理改善搅拌区的组织和硬度.研究表明,搅拌摩擦加工导致搅拌区的晶粒细化,硬度提升.不同的旋转速度会对后续热处理造成影响.采用低转速时,后续热处理不能进一步提高搅拌区的硬度;而采用高转速时,搅拌区的硬度则可以通过后续热处理得到提升.采用O态铝合金作为母材时,基体内的原始析出强化相尺寸粗大,热稳定性较高,难以在搅拌摩擦加工过程中充分溶解.通过提高转速来增加加工热输入可以增加析出相的溶解量,有利于后续热处理对组织和硬度的改善.  相似文献   

6.
Friction stir processing (FSP) is used locally to modify the microstructure and thus mechanical properties of 5083-H321/5356 aluminum gas metal arc welds (GMAWs). Four specimen approaches were examined: as-arc welded, weld toe FSP (with arc weld on either the advancing or the retreating side of tool), and weld crown FSP. Microstructures within the fine-grained FSP region contained smaller constituent particles. Mg2Si and Al6(Fe,Mn), than those particles found in the arc weld nugget, heat-affected zone (HAZ), and base-metal (BM) locations. The FSP improved the monotonic tensile strength, yield strength, and elongation of 5083-H321/5356 Al arc welds by 6 to 9 pct, 7 to 13 pct, and 46 to 80 pct, respectively. The addition of FSP produced a 30 pct increase in the load necessary to reach 107 cycles during four-point bending fatigue. An analysis of strengthening mechanisms determined that solid-solution, grain-size, and precipitation strengthening made contributions to the calculated yield strength of the BM, are weld nugget, and FSP regions. In addition, the strength mechanism analysis demonstrated that FSP increased the amount of grain-size strengthening and precipitate strengthening by nearly 110 MPa, when compared to the arc weld nugget.  相似文献   

7.
The effects of process parameters on the solidification structure of A390 aluminum alloy hollow billets prepared by direct-chill casting were investigated. The decrease of casting temperature deteriorated the homogeneity and increased the size of primary Si particles in the hollow billet. Although the average size of primary Si particles was not obviously affected by the increase of casting speed, the thickness of Si-depleted layer at the inner wall increased with the higher casting speed. The tensile strength of A390 alloy is a function of the percentage of coarse Si particles (larger than 35 μm) and the average size of primary Si particles. Higher and more stable tensile strength can be received in the hollow billet with the casting temperature of 1050 K (777 °C), because the fine and uniformly distributed primary Si particles were obtained in the hollow billet.  相似文献   

8.
Aluminium alloy 5083, widely used in marine applications, undergoes accelerated corrosion in sea water due to the aggressive reaction of chloride ions with the secondary phase particles and other intermetallics present in the alloy matrix. The corrosion rate of the alloy is also influenced by the temperature difference between the alloy and its environment. Friction stir processing (FSP) is a recent solid state processing technique for improving the surface properties of metals and alloys. In this study, an attempt has been made to explore the possibility of improving the corrosion resistance of AA5083 by FSP. FSP trials were performed by varying the tool rotation speed, tool traverse speed and shoulder diameter of the tool, as per face centered central composite design. The corrosion potential and the corrosion rate of friction stir processed AA5083 was studied using potentiodynamic polarization studies, at three different temperatures. Mathematical models based on polynomial—radial basis function were developed and used to study the effect of process parameters on the corrosion potential and the corrosion rate of friction stir processed AA5083. FSP resulted in refinement of the grain structure, dispersion and partial dissolution of secondary phase particles in the matrix, which increased the corrosion resistance of the alloy.  相似文献   

9.
The aim of this study is to present an overall view of friction stir processing (FSP), including the method, the state‐of‐the‐art regarding current studies, and possible applications. FSP is a solid‐state thermo‐mechanical processing method. It can be used to produce defect‐free, recrystallized, homogeneous, fine grained microstructures. Structures can be processed at specific locations, through‐section or to a desired depth, or entirely. The benefits obtained with FSP include elimination of casting defects and refinement of microstructures resulting in improved strength, ductility, resistance to corrosion and fatigue, and formability (including high strain rate superplasticity). Alsosurface composites can be produced by FSP.  相似文献   

10.
Microstructural evolution and related dynamic recrystallization phenomena were investigated in overlapping multipass friction stir processing (FSP) of hypereutectic Al-30 pct Si alloy. FSP resulted in the elimination of porosities along with the refinement of primary silicon particles and alpha aluminum grains. These alpha aluminum grains predominantly exhibit high angle boundaries with various degrees of recovered substructure and dislocation densities. The substructure and grain formation during FSP take place primarily by annihilation and reorganization of dislocations in the grain interior and at low angle grain boundary. During multipass overlap FSP, small second phase particles were observed to form, which are accountable for pinning the grain boundaries and thus restricting their growth. During the multipass overlap FSP, the microstructure undergoes continuous dynamic recrystallization by formation of the subgrain boundary and subgrain growth to the grain structure comprising of mostly high angle grain boundaries.  相似文献   

11.
Mg-10Gd-3Y-0.5Zr (wt pct) casting was subjected to friction stir processing (FSP) at a constant rotation rate of 800 rpm and varied travel speeds of 25, 50, and 100 mm/minute. FSP resulted in the generation of fine-grained microstructure and fundamental dissolution of coarse Mg5(Gd,Y) phase at the grain boundaries, thereby enhancing the tensile properties significantly at both room and elevated temperatures. The grain size of the FSP samples decreased with the increasing travel speed, whereas the microstructure heterogeneity with the banded structure (onion rings) became evident at a higher travel speed. Tensile elongation of the FSP samples increased as the travel speed increased, whereas the highest strengths were obtained at the medium travel speed of 50 mm/minute. Higher strengths and greater elongations were observed for the FSP samples in the transverse direction (TD) than in the longitudinal direction (LD). After post-FSP aging, the strengths of the FSP samples were increased significantly with the TD and LD exhibiting the same strengths; however, the elongation was decreased remarkably with the TD having higher elongation than the LD. A variation of the tensile properties was discussed in detail based on the microstructure heterogeneity and fracture surfaces.  相似文献   

12.
In the present investigation, the microstructural, wear, tensile and compressive properties of Al?C7Si alloy matrix nano composites have been discussed. It is noted that the composites contain higher porosity level in comparison to the matrix and increasing amount of porosity is observed with the increasing volume fraction of the reinforcement phase in the matrix. The wear sliding test disclosed that the wear resistance of the nano SiC reinforced composites is higher than that of the unreinforced alloy. It is believed that the presence of SiC particles could shield the matrix and silicon phase from directly experiencing the applied load from the counterface. It was revealed that the presence of nano-SiC reinforcement also enhanced the hardness, tensile and compressive yield strength of Al?C7Si alloy which can be attributed to small particle size and good distribution of the SiC particles and grain refinement of the matrix. The highest yield strength and UTS was obtained by the composite with 3.5?vol% SiC nano-particles. The results show that the addition of nano-particles reduces the elongation of A356 alloy.  相似文献   

13.
The effect of barothermal treatment by hot isostatic pressing (HIP) on the structure and the properties of castings of a promising high-strength cast aluminum alloy, namely, nikalin ATs6N4 based on the Al?Zn–Mg–Cu–Ni system, has been studied using two barothermal treatment regimes different in isothermal holding temperature. It is shown that the casting porosity substantially decreases after barothermal treatment; eutectic phase Al3Ni particles are additionally refined during exposure to the barothermal treatment temperature: the higher the HIP temperature, the more substantial the refinement. The improvement of the casting structure after HIP increases their mechanical properties. It is found, in particular, that the plasticity of the alloy in the state of the maximum hardening increases by a factor of more than 8 as compared to the initial state (from 0.82 to 6.9%).  相似文献   

14.
In the present study, influence of friction stir processing (FSP) tool pin profile on the microstructure evolution, corrosion and machining characteristics of the AZ91 magnesium alloy was investigated. Three different pin profiles namely simple taper, threaded taper and square taper were selected and FSP was carried out at 1400 rpm and 25 mm/min tool travel speed. Microstructural observations indicated grain refinement from a starting grain size of 166.5–7.9, 22.1 and 4.08 µm for FSPed samples processed by simple taper, threaded taper and square taper pins, respectively. In all the FSPed samples, decreased amount of secondary phase (Mg17Al12) was observed compared with that of the unprocessed sample. From the X-ray diffraction analysis, it was observed that the square taper pin tool had induced higher texture effect compared with the other two FSP tools. From the electrochemical studies, the corrosion resistance of the sample processed with square taper pin tool was observed to be more in comparison to that of the other samples; which could be attributed to the texture effect and decreased fraction of secondary phase. Machining behavior assessed by conducting drilling experiments showed a significant influence of grain refinement on the cutting forces.  相似文献   

15.
Friction stir processing (FSP) was used to successfully embed galfenol particles into aluminum (AA 1100 Al) matrix uniformly. However, intermetallic layer of Al3Fe was formed around the galfenol particles. Activation energy for Al3Fe formation during FSP was estimated, and attempts were made to minimize the Al3Fe layer thickness. By changing the processing conditions, FSP successfully eliminated the intermetallic layer. Hence, FSP, in addition to microstructural control, can successfully fabricate intermetallic-free embedded regions by controlling the reaction kinetics.  相似文献   

16.
The effect of the conditions of friction stir welding (FSW) of 1570C aluminum alloy sheets on the structure and mechanical properties of the welded joints is studied. A recrystallized fine-grained structure with a grain size changing with the rate of welding tool rotation forms in a weld during FSW. As compared to the base metal, the yield strength of the weld metal decreases by 9–22% depending on the rate of welding tool rotation, and the ultimate tensile strength is almost independent of the FSW conditions and accounts for ~90% of the ultimate tensile strength of the base metal. The plasticity of the weld metal is >13% for all rates of welding tool rotation. The microstructure and mechanical properties of the weld zone are discussed.  相似文献   

17.
The microstructural evolution during twin roll casting (TRC) and downstream processing of AA5754 Al alloy with high added impurity content have been investigated. Strip casts with a high impurity content resulted in coarse α-Al grains and complex secondary phases. The grain size and centerline segregation reduced significantly on the addition of Al-Ti-B grain refiner (GR). Coarse-dendrite arm spacing (DAS) “floating” grains are observed in the impure alloy (IA) with higher volume in the GR strips. Two-dimensional (2D) metallographic analysis of the as-cast strip suggests that secondary phases (Fe-bearing intermetallics and Mg2Si) are discrete and located at the α-Al cell/grain boundaries, while three-dimensional (3D) analysis of extracted particles revealed that they were intact, well interconnected, and located in interdendritic regions. Homogenizing heat treatment of the cast strip breaks the interconnective networks and modifies the secondary phases to a more equiaxed morphology. During rolling, the equiaxed secondary phases align along the rolling direction. X-ray diffraction (XRD) analysis suggests that α-Al(FeMn)Si and Mg2Si are the predominant secondary phases that are formed during casting and remain throughout the downstream processing of the GR-IA. The high-impurity sheet processed from TRC resulted in superior strength and ductility over the sheet processed from small book mold ingot casting. The current study has shown that the TRC process can tolerate higher impurity levels and produce formable sheets from the recycled aluminum for structural applications.  相似文献   

18.
The relationship between the microstructure and mechanical properties of alloy 718 was investigated for two discs centrifugally cast at 50 and 200 rpm and given a duplex age heat treatment. The results of mechanical property tests at temperatures from 426 to 649 °C showed that the tensile yield and ultimate strength levels of both castings were similar. However, the creep-rupture properties were considerably enhanced for the casting produced at 200 rpm. Comparison of the radial and transverse creep properties of each disc indicated that creep life was generally independent of orientation, but ductility was greatest for specimens oriented transverse to the radial direction of the casting. Fatigue crack propagation performance was not greatly influenced by orientation or mold speed parameters and was comparable to wrought alloy 718 when compared on the basis of stress intensity factor range. The centrifugal casting process was found to produce a homogeneous microstructure free of porosity but with the expected segregation of solute alloying elements to Laves and carbide phases. The effect of the as-cast microstructure on the mechanical behavior and the potential influence of hot isostatic pressing to improve the microstructure are discussed.  相似文献   

19.
This paper is aimed at development of an effective approach based on the combination of GA, FEM and artificial intelligent methods to determine the optimum conditions of Al Matrix nano composites in terms of microstructure and mechanical properties. Using the stir casting method, alumina nano-particles were incorporated into the Al–Si aluminum alloy. Characterization of the mechanical properties showed that the presence of nano particles significantly improved the hardness and strength of the composites. Then artificial neural network and finite element technique were implemented in order to predict the mechanical properties and genetic algorithms were used for the process conditions optimization. It was revealed that the proposed model is a useful and efficient method to find the optimal process conditions in stir casting.  相似文献   

20.
In the present study, friction welding of tube to tube plate using an external tool (FWTPET) was used to weld copper tubes with aluminum plates. Tubes were prepared with holes along the faying surfaces of tubes and cleaned before welding. The weld microstructure shows line of stir zone (SZ), a narrow thermo mechanically affected zone and heat affected zone (HAZ). The welded samples were found to have satisfactory joint strength and the XRD study showed the presence of AlCu intermetallic in the weld zone. The hardness survey revealed that there was a slight increase in hardness adjacent to the weld interface due to grain refinement. Better weld joints were achieved when the tool rotation speed and interference are 1500 rpm and 0.8 mm respectively. The present study confirms that a high quality copper tube to aluminium tube plate joint can be achieved by FWPET process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号