首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
在制备La-Ni-Co-Fe中间合金的基础上,采用机械合金化方法制备La0.7Mg03Ni2.8C005-xFex(x=0,0.1,0.2,0.3,0.4,0.5)系列储氢合金,研究在不同球磨时间下储氢合金的物相、微观形貌和电化学性能及元素置换对其储氢性能的影响.结果表明La0.7Mg0.3Ni2.8Co0.5合金的主相为LaNi5相,La0.7Mg0.3Ni2.8Co0.5-xFex系列储氢合金球磨40h和80h后,主相为LaNi5相和少量LaMg2Ni9相;且随着球磨时间的增加,合金晶粒变细小,La0.7Mg03Ni2.8Co0.5合金的最大放电容量呈变大的趋势,从142.4mA.h/g增加到157.5mA.h/g,La0.7Mg0.3Ni2.8Co0.2Fe0.3合金的最大放电容量从150.7mA·h/g增加到162.1mA·h/g,合金具有较好的循环稳定性能.  相似文献   

2.
感应熔炼法制备了(La_(0.78)Mg_(0.22))(Ni_((0.9-x))Co_(0.1)Mn_x)_(3.5)(x=0.00,0.01,0.03,0.05,0.07)合金,并在氩气气氛下,以1 173 K温度退火处理。XRD相结构分析表明,合金具有多相结构,随着Mn含量的不同分别含有:La_2Ni_7相、LaNi_5相和LaNi_3相。P-C-T性能测试表明,合金在3 MPa压力和298 K温度下的吸氢量高达1.6 wt.%。电化学测试表明,合金放电容量随着Mn含量的增大而减小,由x=0时的394.2 mAh/g下降到x=0.07时的363.3 mAh/g,充放电循环性能是先下降,后上升,再下降。合金的倍率性能随着Mn含量的增加先上升,后下降,然后又上升。当放电电流密度为3 000 mA/g时,高倍率性能由x=0时的201.6 mAh/g变为x=0.07时的182.9 mAh/g。研究表明当x=0.03时合金具有比较好的综合性能。  相似文献   

3.
采用不同的负极片制作方法制备了储氢Mm_(0.3)Ml_(0.7)Ni_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3)合金电极,在夹片式三电极系统中,利用电化学性能测试方法对电极的活化性能、放电容量、高倍率放电能力等进行了测试。结果表明,采用干法时电极的5个平行样的放电容量均高于湿法且活化快,电极中羟基镍粉能有效降低活化次数;电极在所设计的成分范围内,随着电极中羟基镍粉含量的增加,电极的最大放电容量呈现上升趋势,对应成分电极的放电容量处于300~344 mAh/g,比湿法的容量增加3.8%~19.0%;添加不同质量分数的羟基Ni粉,能够有效的提高合金电极在不同大电流下高倍率放电能力;Mm_(0.3)Ml_(0.7)Ni_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3)/200 wt%Ni电极的放电特性最好。  相似文献   

4.
研究了储氢合金(MlMg)Ni4-xCo0.7Znx(0≤x≤0.3)的气相储氢特性和电化学性能。结果表明,随着Zn含量的增加,合金吸、放氢(室温下)的平台压力降低,最大储氢量减少,分别从1.58%(x=0)减少到1.44%(x=0.2)、1.19%(x=0.3);合金的放电容量减少,分别从380mAh/g(x=0)减少到366mAh/g(x=0.1)、345mAh/g(x=0.2)、271mAh/g(x=0.3),但循环稳定性得到提高,经100次充放电循环后的容量衰减率从16%(x=0)降低到4%(x=0.3);适当控制Zn含量,既对合金的放电容量无大的影响,又可提高合金放电的稳定性,尤其是在大电流下放电的稳定性。  相似文献   

5.
为了提高La_(0.94)Mg_(0.06)Ni_(3.49)Co_(0.73)Mn_(0.12)Al_(0.20)储氢合金的电化学性能,利用石墨烯与储氢合金研磨混合来对其进行表面改性处理。采用X射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)分析合金的相结构和表面形貌。结果表明:添加石墨烯后合金的相结构并没有发生改变,石墨烯包覆在了合金的表面,增大了合金的比表面积,提高了合金的电化学性能。当添加质量分数为5%的石墨烯时,电极的最大放电容量可达到380.6mAh/g,容量保持率S50从69.5%提高到71.1%。添加石墨烯后,交换电流密度、极限电流密度和腐蚀电位均变大、电化学反应阻抗降低,说明电极的动力学性能得到改善。  相似文献   

6.
采用熔盐保护熔炼法(SMPMS)成功制备了La2Mg17储氢合金.SEM和EDS研究发现,熔炼时液相在凝固过程中形成微观成分不均匀的非平衡组织.通过PCT性能测试发现,合金在523~623 K时可逆吸放氢量大于4.3%(质量分数, 下同).动力学分析结果表明,合金在473~623 K时具备良好的氢化动力学性能,并且在523 K时出现氢化速率极大值(25 s内吸氢3.2%).丰富的表面裂纹改善了合金的储放氢性能.  相似文献   

7.
(La0.8Nd0.2)2Mg(Ni0.8-xCo0.1Mn0.1Alx)9(x=0~0.15)系列合金经退火处理,合金电极具有较好的活化性能,经1~4次充放电循环就可达到最大放电容量,合金电极的最大放电容量Cmax得到提高,最大值为399.2 mA·h/g(x=0)。并随着Al替代量的增加,合金电极的吸放氢平台压降低,而吸氢滞后增大。同时,退火处理能明显改善合金电极的循环稳定性,经60次充放电循环后,合金电极的容量保持率(S60)最大值为76.7%(x=0.1)。  相似文献   

8.
采用机械合金化制备(Mg_(58)Al_(42))_(0.9)Ni_(0.1)储氢合金,研究其在不同球磨时间下的电化学性能以及添加Ni对其电化学性能的影响.结果表明:合金粉末经球磨后产生Mg_(17)Al_(12)新相,Ni未溶入其它相中;合金的放电容量随球磨时间延长先增加而后又降低,其中球磨20 h的合金放电容量最大,为345.8 mA·h/g;合金的腐蚀速度随球磨时间延长先减慢而后加快, 其中球磨10 h的合金腐蚀电流密度最低,为14.85μA/cm~2,且腐蚀速度最慢;合金的动电位极化曲线出现钝化现象,钝化区间较宽;交流阻抗谱由单容抗弧组成,没有出现扩散尾,腐蚀过程受电化学反应控制;添加Ni后,合金放电容量增大,腐蚀速度减慢.  相似文献   

9.
研究了球磨方法制备的Mg_2Ni-xMLNi_(3.8)Co_(0.75)Mn_(0.4)Al_(0.2)(x=0,10,20,30)复合型镁基储氢合金的电化学性能。结果表明,相比原始Mg_2Ni合金,添加球磨制备的MLNi_(3.8)Co_(0.75)Mn_(0.4)Al_(0.2)复合型镁基储氢合金的循环放电性能和电化学催化活性都得到改善,其中以Mg_2Ni-30wt%MLNi_(3.8)Co_(0.75)Mn_(0.4)Al_(0.2)复合型镁基储氢合金的电化学性能改善效果最佳。  相似文献   

10.
采用真空感应熔炼方法制备了La0.63Gd0.2Mg0.17Ni2.85Co0.3Al0.15和La0.63Gd0.2Mg0.17Ni3..05Co0.3Al0.15贮氢合金,并在氩气气氛中和900℃进行退火处理,通过X射线衍射(XRD)、显微电子探针(EPMA)分析方法和电化学测试分析研究了不同化学计量比对合金微观组织和电化学性能的影响。研究结果表明,该系列合金退火组织主要由Ce2Ni7+Gd2Co7型、Pr5Co19型﹑PuNi3型和CaCu5型相组成,AB3.3中Ce2Ni7+Gd2Co7型相明显比AB3.5减少。电化学测试分析表明,不同的化学计量比对合金电极活化性能影响不大,AB3.5合金的最大放电容量大于AB3.3合金。AB3.5合金的循环稳定性明显高于AB3.3合金,经100次充放电循环后其电极容量保持率S100分别为90.2%和83.7%,其中AB3.5合金具有最好的综合电化学性能。  相似文献   

11.
用放电等离子烧结技术(SPS)制备La0.7Mg0.3Ni2.5Cox(x=O.1,0.2,0.3,0.4,0.5)贮氢合金。采用X射线衍射、三电极测试体系和交流阻抗法研究了合金的相结构、贮氢性能和电化学性能。结果表明:合金为多相结构,主相为(La,Mg)2Ni,和(La.Mg)Ni3相;该系列贮氢合金的贮氢容量随x值的增大先增后减,在x=0.4时贮氢容量达1.37%。最大放电容量为365.4mAh/g。合金的活化性能好(活化次数均为1次),随着x值的增加,贮氢合金的放氢平台压力升高,合金电极表面电荷转移速率增大。  相似文献   

12.
1 INTRODUCTIONTherapiddevelopmentofelectricvehiclesisin evitablebecauseoflessenvironmental pollution .Now ,oneofR&DdirectionsisfocusedontheEVinUSA ,Japan ,Canadaetctosatisfytherequirementoftherapiddevelopmentoftransportation ,energyandenvironment .Fuelcell[1,…  相似文献   

13.
研究了Mg50 Ni50 -xTix 合金的非晶形成能力与非晶合金电极的吸放氢性能。结果表明 :在Mg50 Ni50 -xTix合金中 ,当Ti替代Ni元素的量低于 1 5% (摩尔分数 )时 ,机械合金化能够得到几乎单一的非晶态合金 ;用Ti替代Ni形成的三元非晶合金能降低镁镍合金的平衡氢压 ;少量的Ti替代能改善合金的电化学吸放氢容量 ,使合金电极的吸放氢循环稳定性得到提高。这被认为是在三元合金中钛元素减缓了合金中镁元素的氧化腐蚀进程所致。  相似文献   

14.
为了降低镍氢电池的原材料成本 ,研究了一系列多元、低钴和无钴AB5型贮氢合金 ,以及取代元素对贮氢合金电化学性质的影响。结果显示 ,用少量的铁、铜和铬部分取代贮氢合金La(NiMnCoAl) 5中的钴对改善贮氢合金电化学循环稳定性有效。贮氢合金La(NiMnAl) 4.6(FeCuCr) 0 .2 Co0 .2 具有满意的循环稳定性 ,它在 0 .2C放电条件下的最大放电容量为 2 96mAh/g-1,经过 30 0次循环容量衰减仅 2 1.8%。另外 ,还用X射线衍射检测了贮氢合金的微观结构  相似文献   

15.
采用三步感应熔炼法制备了La(1-x)MgxNi4.25Al0.75 (x=0.0,0.1,0.2,0.3) 储氢合金,对该系列合金的晶体结构和储氢性能方面进行了研究。晶体结构和相分析结果表明,当x=0.0和0.1时,合金由单一的LaNi4Al相组成;而x=0.2和0.3时,合金由LaNi4Al相, (La,Mg)Ni3相和AlNi3相构成。随着Mg含量x从0.2增至0.3时,合金的第二相丰度和吸/放氢平衡压明显升高,同时储氢容量减小。研究发现,当Mg添加量x=0.1时,合金除具有良好的储氢容量和低平台压外,其吸氢动力学性能更好。  相似文献   

16.
采用悬浮熔炼加烧结的方法制备LaMgNi4?xCox(x=0,0.3,0.5)化合物。XRD的测试结果表明,所制得的LaMgNi4?xCox (x=0,0.3,0.5)均为单相,其结构为SnMgCu4(AuBe5型)。利用PCI 对LaMgNi4在不同温度下的吸放氢性能进行测试,结果表明在373 K、4.3 MPa氢气的条件下吸氢量达到最大(1.45%),在吸氢过程中发生了由立方结构的α-LaMgNi4到正交结构的β-LaMgNi4H3.41再到立方结构的γ-LaMgNi4H4.87的变化,而放氢过程中只能观测到部分氢气放出。随着温度的升高,合金的吸氢量有所降低,同时吸氢平台的数量由2个变为1个,但吸氢动力学性能得到提高。采用模拟电池实验测试了LaMgNi4?xCox (x=0,0.3,0.5)的电化学性能,结果表明合金的最大放电容量随着Co含量的增加而增大。  相似文献   

17.
1 Introduction AB5-type rare-earth-based hydrogen storage al- loys have widely been used as negative electrode materials for nickel-metal hydride batteries due to their inherent advantages, especially high hydrogen storage capacity, easy activation and lo…  相似文献   

18.
The effects of annealing treatment on the microstructure and electrochemical properties of low-Co LaNi3.55Mn0.35Co0.20Al0.20Cu0.75Fe0.10 hydrogen storage alloys were investigated. X-ray diffraction (XRD) analysis indicated that annealing treatment remarkably reduced the lattice strain and defects, and increased the unit-cell volume. The optical microscope analysis showed that the as-cast alloy had a crass dendrite microstructure with noticeable composition segregation, which gradually disappeared with increasing annealing temperature, and the microstructure changed to an equiaxed structure after annealing the alloy at 1233 K. The electrochemical tests indicated that the annealed alloys demonstrated much better cycling stability compared with the as-cast one. The capacity retention at the 100th cycle increased from 90.0% (as-cast) to 94.7% (1273 K). The annealing treatment also improved the discharge capacity. However, the high rate dischargeability (HRD) value of the annealed alloy slightly dropped, which was believed to be ascribed to the decreased exchange current density and the hydrogen diffusion coefficient in alloy bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号