首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了研发高性能颗粒增强铝基复合材料,采用Gleeble-3800热模拟试验机,研究了粉末冶金15%SiC_p/2009A1复合材料在变形温度为370~520℃、应变速率为0.01~10.00 s-1条件下的高温变形特性。结果表明,当变形速率一定时,该复合材料的流变应力随变形温度升高而降低;当变形温度一定时,复合材料的流变应力随应变速率增大而提高。采用动态材料模型建立了15%SiC_p/2009A1复合材料的热加工图。热加工图表明,在较高应变速率区域(2.00~10.00 s~(-1)),出现流变失稳,有少量颗粒—基体界面开裂和SiC颗粒本身破碎。该复合材料的动态再结晶区域位于加工图的较低应变速率区域(1.00 s~(-1)),功率耗散率值较为适中,为0.24~0.35,此时材料具有良好的塑性,适合进行热加工变形。综合加工图以及微观组织观察结果,获得了复合材料热变形的最佳工艺参数:变形温度为450~490℃、应变速率为0.01~0.10 s~(-1)。  相似文献   

2.
采用Glebble-1500D热模拟试验机,在350~500℃变形温度、0.01~10.00 s-1应变速率条件下进行等温压缩变形,研究40%Si Cp/Al复合材料(体积分数)的热加工性能。通过热变形真应力-真应变曲线分析复合材料的热变形规律,建立材料本构方程,利用动态材料模型计算出应变速率敏感指数和功率耗散效率系数,绘制出功率耗散图、失稳图及二维加工图。结果表明,应变速率和变形温度显著影响流变应力,应变速率一定时,变形温度升高,流变应力减小;在相同的变形温度下,随应变速率的增加,流变应力也随之升高。根据加工图可知,在高温高应变速率条件下,材料的功率耗散效率系数大,说明该变形区域发生了组织转变;应变对失稳区域和加工区域影响不大,功率耗散效率系数随应变的增加而增大。40%Si Cp/Al复合材料建议热加工条件为变形温度436~491℃,应变速率0.04~9.97 s-1。  相似文献   

3.
采用Gleeble-1500热模拟试验机,对30%SiCp/2024A1复合材料在温度为350~500℃、应变速率为0.01~10 s-1条件下进行热压缩试验,研究该合金的热变形行为与热加工特征,建立热变形本构方程和加工图。结果表明,30%SiCp/2024A1复合材料的流变应力随温度升高而降低,随应变速率增大而升高,说明该复合材料是1个正应变速率敏感的材料,其热压缩变形时的流变应力可采用Zener-Hollomon参数的双曲正弦形式来描述,在实验条件下平均热变形激活能Q为334.368 kJ/mol。热加工图表明30%SiCp/2024Al复合材料最适合加工的条件是变形温度为500℃,应变速率为0.01 s-1  相似文献   

4.
在Gleeble-3180热模拟机上对碳化硅颗粒增强铝基(SiCp/2014Al)复合材料进行热压缩试验,研究其在变形温度为350,400,450 ℃和500 ℃,应变速率为0.001,0.01,0.1s-1和1.0 s-1条件下的热变形行为。根据热压缩实验的真应变-真应力数据,在考虑应变、应变速率和变形温度对流动应力的耦合影响下构建修正的Johnson-Cook(JC)本构模型,同时建立人工神经网络模型(ANN)。结果表明:SiCp/2014Al复合材料的流变应力随应变速率的增加和温度的降低而增大。与修正的JC模型相比,ANN模型具有较低的均方根误差(0.51 MPa)和平均绝对误差(1.43%),以及较高的相关系数(0.999 7),表明其对SiCp/2014Al复合材料热变形流变应力的预测具有更高的预测精度和可靠性。   相似文献   

5.
Al-Cu-Mg-Mn-Sc-Zr铝合金的热变形行为是制定变形加工工艺的基础。采用Gleeble-3500模拟试验机对经均匀化处理的Al-Cu-Mg-Mn-Sc-Zr铝合金进行等温压缩模拟试验,试验温度为633~753 K,应变速率0.01~10s~(-1),测定真应力-真应变曲线,计算变形激活能,并建立加工图。结果表明:随变形温度升高或应变速率降低,合金的流变应力降低,热变形软化机制由动态回复逐渐转变为动态再结晶,第二相对位错滑移及晶界迁移起钉扎作用,阻碍再结晶进程。合金变形激活能为153.5 kJ/mol。633~663 K、0.01~0.07 s~(-1)以及693~723 K、0.01~0.1 s~(-1)两个区域为最佳变形区域。  相似文献   

6.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

7.
采用Gleeble-1500D热模拟试验机研究30%SiCp/Al复合材料在温度为623~773 K、应变速率为0.01~10 s-1下的热变形及动态再结晶行为。结果表明:材料的高温流变应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度降低或应变速率升高而增大,材料热激活能为272.831 k J/mol。以试验数据为基础,建立q-s和?q/?s-s曲线,从而进一步获得动态再结晶的临界应变和稳态应变,通过试验数据的回归分析,建立动态再结晶的临界应变模型和稳态应变模型,并在此基础上,获得所需要材料的动态再结晶图。  相似文献   

8.
《特殊钢》2017,(1)
试验用EA1N钢(/%:0.35C,0.30Si,0.90Mn,0.013P,0.008S,0.15Cr,0.10Ni,0.10Cu,0.04V,0.04Al)的冶金流程为60 t EBT EAF-LF-VD-下铸8.4 t方锭-车成150 mm×150 mn方坯。采用Gleeble-3800型热模拟机试验研究了EA1N钢在800~1 300℃、应变速率0.01~10 s~(-1)时的热压缩变形,分析该钢变形时的流变应力、应变速率及变形温度之间的关系,得出流变应力方程。结果表明,EA1N钢在热压缩变形时流变应力随应变速率提高而增大,随变形温度升高而降低,当温度高于1 100℃和应变速率大于1 s~(-1)时,该钢流变曲线呈现明显的动态再结晶特征。EA1N钢的热变形激活能为392.43 kJ/mol。  相似文献   

9.
采用真空热压烧结法制备Cu-Al_2O_3复合材料,并在Gleeble-1500D热模拟机上对其进行高温压缩试验.阐述了内氧化原理,分析了真空热压烧结制备的铜基复合材料的微观组织和材料性能,研究了在变形温度为650~950℃,变形速率为0.01~5s~(-1),最大真应变为0.7时的流变应力行为.结果表明:变形温度和变形速率对流变应力的影响较大,随着变形温度的升高和应变速率的减小,峰值应力逐渐减小.采用双曲线正弦模型建立了材料高温变形时的流变应力本构方程,确定热变形激活能为220.7kJ/mol.  相似文献   

10.
采用Gleeble-3800型热模拟机试验研究了34CrMo4H钢在900~1 200℃、应变速率0.1~10s~(-1)时的高温热压缩行为,分析了热压缩变形时材料的流变应力与变形温度、应变速率之间的关系,确定了该钢的流变应力本构方程。结果表明,34CrMo4H钢在热压缩时流变应力随形变温度的升高而减小,随应变速率的增加而增大。应变速率小于0.1 s~(-1)时,该钢应力-应变曲线表现出明显的动态再结晶特征。34CrMo4H级钢的变形激活能为395.45kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号