首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading conditions are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1 × 103 s?1 to 5 × 103 s?1 and temperatures between 25 °C and 800 °C. The experimental results indicate that the flow response and fracture characteristics of 316L stainless steel are significantly dependent on the strain rate and temperature. The fracture analysis results indicate that the 316L specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed 316L specimens are characterised by a dimple-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.  相似文献   

2.
AISI 321 austenitic steel forms martensite due to quasi-static and cyclic loading. This presupposes the exceeding of the threshold value of cumulated plastic strain. The main aim is to determine the fatigue damage of austenitic steel by characterizing the martensitic structure with the help of the SQUID measuring technique. Several specimen batches were evaluated and thereby the load amplitudes and the test temperatures were varied (room temperature and 300°C). The experiments result in characteristic curves of the SQUID signals according to the fatigue damage which could be confirmed with comparative measurements with different methods, such as, e.g. ultrasonic absorption measurements. The extremely sensitive SQUID measuring technique allows also detection of information in specimens fatigued at a temperature of 300°C in which the phase fractions of strain-induced martensite are extraordinarily low.  相似文献   

3.
Stainless steels are widely used in nuclear power plant due to their good corrosion resistance, but their wear resistance is relatively low. Therefore, it is very important to improve this property by surface treatment. This paper investigates cladding Colmonoy 6 powder on AISI316L austenitic stainless steel by CO2 laser. It is found that preheating is necessary for preventing cracking in the laser cladding procedure and 450 °C is the proper preheating temperature. The effects of laser power, traveling speed, defocusing distance, powder feed rate on the bead height, bead width, penetration depth and dilution are investigated. The friction and wear test results show that the friction coefficient of specimens with laser cladding is lower than that of specimens without laser cladding, and the wear resistance of specimens has been increased 53 times after laser cladding, which reveals that laser cladding layer plays roles on wear resistance. The microstructures of laser cladding layer are composed of Ni-rich austenitic, boride and carbide.  相似文献   

4.
This study is devoted to the effect of a multiaxial stress state and of pre-straining on the creep properties of an austenitic stainless steel. Creep tests on both smooth and notched specimens have been carried out on type 316L(N) steel at 600 °C. In comparison to the annealed state, pre-straining caused a substantial increase in creep lifetime but also a dramatic drop in intergranular damage resistance. The effect of a pre-strain on creep ductility was so strong that compact tension specimens in pre-strained state tested under relaxation conditions cracked, whereas specimens in annealed state were not prone to cracking. A model taking into account both pre-strain and multiaxial effects was developed and identified on the basis of local intergranular micro-cracks measurements on notched specimens. It satisfactorily predicts the results of relaxation crack propagation tests. This model may also provide a useful estimation of the relaxation cracking risk of 316L(N) as a function of pre-strain level and stress triaxiality ratio.  相似文献   

5.
6.
The boronizing effect on the radiation shielding properties and magnetization of AISI 316L austenitic stainless steel has been investigated. For this purpose the linear attenuation coefficients of steel have been measured at the photon energies of 662, 1170 and 1332 keV and the results were compared with the calculation at the photon energy of 1-108 keV. It was clearly seen from this work that both the magnetization and radiation shielding properties of the steel have been improved by boronizing process.  相似文献   

7.
Cold-work is intentionally employed to increase the yield strength of austenitic stainless steels and also occurs during fabrication processes, but it has also been associated with greater incidence of stress corrosion cracking. This study examined the effect of up to 3.85 dpa neutron irradiation on the deformation behaviour and microstructures of 30% cold-worked AISI 304 material tensile tested at 300 °C. While the deformation behaviour of 0.07 dpa material was similar to non-irradiated material tested at the same temperature, its stress-strain curve was shifted upwards by about 200 MPa. Materials irradiated to over 2 dpa hardened some 400-500 MPa, but showed limited strain hardening capacity, exhibiting precipitous softening with further straining beyond the yield point. The observed behaviour is most likely a consequence of planar deformation products serving as strengtheners to the unirradiated bulk on the one hand, while promoting strain localization on the other, behaviour exacerbated by the subsequent neutron irradiation.  相似文献   

8.
Banded structures, which vary with welding parameters, were observed in friction stir processing of 316L austenite stainless steel. Sigma phase precipitation was detected in banded structures by transmission electron microscopy. The amount of banded structure had direct ratio relations with heat input. The higher the heat input, the larger the area of banded structures. This is attributable to slower cooling rate at high heat input, which results in longer exposure to the temperature range for precipitation. The formation of sigma phase produced Cr depletion, which resulted in largely degraded corrosion resistance. The present study suggests that low heat input (i.e. low rotation speeds, low working loads and high welding speed) contributes to restrain sigma phase precipitation.  相似文献   

9.
Results of a temperature change experiment designed to investigate the effects of prior irradiation temperature on the irradiation creep of 20% cold worked AISI 316 stainless steel are reported. The data indicate that this material exhibits an in-reactor “temperature memory” effect. After a temperature change, the material creeps as if it were still subjected to its prior irradiation temperature. Specimens subjected to a decrease in irradiation temperature are found to swell more rapidly than materials subjected to a constant temperature irradiation.  相似文献   

10.
The precipitation behaviour in the gauge lengths and in the heads of initially solution annealed type 316L(N) austenitic stainless steel specimens tested in creep at 550 and 600 °C for periods of up to 85 000 h has been studied using several metallographic techniques. Three phases were detected: M23C6, Laves, and sigma phase. The volume fraction of the precipitated sigma phase was significantly higher than that of carbides and the Laves phase. M23C6 carbide precipitation occurred very rapidly and was followed by the sigma and Laves phases formation in the delta ferrite islands. Sigma and Laves phases precipitated at grain boundaries after longer times. Two different mechanisms of sigma phase precipitation have been proposed, one for delta ferrite decomposition and another for grain boundary precipitation. Small quantities of the Laves phase were detected in delta ferrite, at grain boundaries and inside the grains.  相似文献   

11.
316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.  相似文献   

12.
We present constitutive equations able to account for time independent plasticity together with creep and creep-plasticity interaction. A classical decomposition of the inelastic strain into a time independent plastic strain and a time dependent viscoplastic part is assumed. The coupling between both deformation modes (i.e. creep and plasticity) is obtained through an interaction between the plastic and viscoplastic state variables. In a first part, the capabilities of the model are described, and qualitative identifications are given in order to characterize the behaviour of the model. The practical applicability of the model is then tested, mainly using test results from the literature, but also specific data including creep, relaxation and tensile tests with various loading rates, as reported in the paper. The model is found able to discriminate between the increase of hardening produced by plasticity or creep. The effect of the loading rate on the subsequent amount of relaxation is correctly described and a good general agreement is observed between experiment and model predictions, even for complex loading paths (monotonic with temporary unloading periods, multiaxial loading paths in the stress space).  相似文献   

13.
The liquid Pb-Bi alloy is proposed as material for the spallation target in hybrid systems. During the spallation process, several chemical elements are produced in the target which could generate specific liquid metal embrittlement phenomena. Among these species, zinc is known as an element which can promote LME (liquid metal embrittlement). Corrosion tests were carried out in liquid Pb-Bi in isothermal static conditions without and with 80 wppm of zinc at 150 °C, 350 °C and 600 °C up to 6000 h. No modification of the corrosion kinetics of T91 martensitic and 316L austenitic steels was observed for either unstressed or U-bend specimens with zinc in Pb-Bi. Moreover, no sign of embrittlement was observed for any of the samples with and without zinc.  相似文献   

14.
The compatibility of AISI 316 L stainless steel with the Li17Pb83, eutectic has been studied in the temperature range 623–873 K for times up to 6000 h. In the corrosion layers formed there is a strong Ni depletion and Pb and Li penetration in the matrix.Tests at 623 K in Li17Pb83 on notched tensile specimens under a constant uniaxial tensile load, below the engineering yield stress, have evidenced that. many cracks filled with Pb and possibly Li are formed after relatively short times.  相似文献   

15.
16.
Authors have probed into the creep behaviour of AISI 316L stainless steel welds through the indentation creep test methodology and assessed the deterioration effects of these welds under different ageing conditions subjecting them to different test conditions. Comparison is made between the parent metal and the weld metal for integrity at different levels of ageing and test loads. It is concluded that although the aged weld's deteriorated status is not revealed at low temperature and low load test conditions, it is explicitly revealed when tested at higher temperature and higher loads. Microstructural evidences have been given by the authors and they have suggested mechanisms of creep at different test conditions.  相似文献   

17.
The respective influence of the Von-Mises equivalent stress and of the maximum principal stress on high temperature creep damage of two industrial alloys (INCO 718 and 17-12 SPH stainless steel) are pointed out in a quantitative way through tensile-torsion biaxial tests. Through inversions of the shear component, the important part taken by the principal direction corresponding to the maximum principal stress is also shown. The results are observed to be opposite according to whether the alloy suffers cyclic hardening as 17-12 SPH does or cyclic softening which is the case of Inco 718. These results are supported by metallographic observations. They demand an anisotropic form for the damage variable D, while besides a time dependence, the kinetic equation must include the part taken by the strain.  相似文献   

18.
The results of a study of the swelling and in-reactor creep of EI-847, EP-172, and ChS-68 austenitic steel after irradiation in materials science assemblies in the range 330–700°C and damaging dose 20–96 dpa are presented. The temperature dependences of the volume change of steel were obtained from measurements of the diameter of unloaded ampuls. It is shown that the swelling of the steel increases linearly with increasing tangential stress. The modulus of in-reactor creep in the interval 410–630°C for the steel investigated in the cold-deformed state varies in the range (0.5–3)·10–6 MPa–1·dpa–1. For lower and higher temperatures, the creep modulus increases to (5–8)·10–6 MPa–1·dpa–1.  相似文献   

19.
Low-carbon, nitrogen-controlled 316 stainless steel is regarded as a principal candidate for a main structural material of future fast breeder reactor plants in Japan. To grasp creep deformation and rupture behavior of this steel whose modeling is indispensable in the design of high-temperature components, a number of uniaxial tensile creep tests have been conducted for four products of this steel at 550 °C and higher temperatures. Long-term creep rupture data up to about 94,000 h were obtained and used to examine the applicability of rupture and deformation estimation methods developed earlier. In addition, two tests were conducted using round-bar specimens with circumferential notches to make investigation of the effect of stress multiaxiality on creep damage.  相似文献   

20.
The susceptibility to liquid metal embrittlement (LME) of 316L and T91 steels by mercury has been studied at room temperature. A dedicated experimental device using center crack tension (CCT) specimens was built. We developed a specimen preparation procedure that must be rigorously applied in order to investigate the embrittling effect of Hg. The high strength ferritic-martensitic steel of type T91 is embrittled by Hg at room temperature over a large range of crosshead speeds, between 6.67 × 10−7 and 6.67 × 10−3 m s−1. More surprisingly, the austenitic steel of type 316L is also embrittled by Hg between 1.67 × 10−8 and 2.5 × 10−4 m s−1. The fracture of the T91 and 316L CCT specimens in contact with Hg occurs by shear band decohesion over the above-mentioned range of crosshead speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号