首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to achieve monotonicity and a high-speed performance, a current-cell matrix configuration and a parallel decoding circuit with one-stage latches have been used. A deglitching circuit has been introduced in the decoding stages to guarantee a low glitch energy. P-channel devices used as current sources ensure a low noise level and a ground-referenced voltage output in a doubly terminated 75-Ω transmission line. Experimental results have shown that the maximum conversion rate is 130 MHz and the integral and differential linearity errors are less than 0.5 LSB. The maximum glitch energy is 50 pS-V. The DAC has been developed in a 1-μm digital/analog CMOS technology. The entire circuit dissipates 150 mW at a 130-MHz conversion rate while operating from a single 5-V power supply  相似文献   

2.
A 6-b weighted-current-sink video digital-to-analog converter (DAC) with 10-90% rise/fall time of 4 ns, integrated with a double-metal 3-μm CMOS technology, is described. Current-source matching, glitch reduction, and differential switch driving aspects are considered. A circuit solution and a nonconventional layout technique yield a high conversion rate with a standard CMOS technology. Experimental results show that a conversion rate of 100 MHz is achievable. The power consumption is 150 mW and the active chip area is 0.5×1.0 mm2 . The differential of 0.1 LSB demonstrates that 8 b of accuracy can be achieved. The integral linearity is 0.5 LSB  相似文献   

3.
介绍了一种高速7位DAC的设计及芯片测试结果,该DAC选取高5位单位电流源,低2位二进制电流源的分段结构。考虑了电流源匹配、毛刺降低以及版图中误差补偿等方面的问题来优化电路。流片采用0.35μmChartered双层多晶四层金属工艺,测试结果表明在20 MH z的采样频率下,微分非线性度和积分非线性度分别小于±0.2 LSB和±0.35 LSB。该DAC的满幅建立时间是20 ns,芯片面积为0.17 mm×0.23 mm。电源电压为3.3 V,功耗为3 mW。  相似文献   

4.
This paper describes a 10-b high-speed COMS DAC fabricated by 0.8-μm double-poly double-metal CMOS technology. In the DAC, a new current source called the threshold-voltage compensated current source is used in the two-stage current array to reduce the linearity error caused by inevitable current variations of the current sources. In the two-stage weighted current array, only 32 master and 32 slave unit current sources are required. Thus silicon area and stray capacitance can be reduced significantly. Experimental results show that a conversion rate of 125 MHz is achievable with differential and integral linearity errors of 0.21 LSB and 0.23 LSB, respectively. The power consumption is 150 mW for a single 5-V power supply. The rise/fall time is 3 ns and the full-scale settling time to ±1/2 LSB is within 8 ns. The chip area is 1.8 mm×1.0 mm  相似文献   

5.
An I/Q channel 12-bit 120?MS/s CMOS DAC with deglitch circuits   总被引:1,自引:0,他引:1  
This paper describes an I/Q channel 12bit 120?MS/s DAC with deglitch circuits. The proposed DAC implemented in a 0.35???m CMOS n-well process employs three stage 4 bit thermometer decoders and deglitch circuits to minimize glitch energy and linearity error. The measurement results show a ±1.5?LSB/±1.3?LSB of INL/DNL and 31 pV·s of glitch energy. ENOB and SFDR are measured to be 10.5 bit and 71.09?dB at sampling frequency of 120?MHz and input frequency of 1?MHz with a total power consumption of 105?mW. Linearity error between I-channel DAC and Q-channel DAC is measured to be approximately 1.5?mV, i.e. the accuracy of 13 bit.  相似文献   

6.
A 10-bit 200-MHz CMOS video DAC for HDTV applications   总被引:1,自引:0,他引:1  
This paper describes a 10-bit 200-MHz CMOS current steering digital-to-analog converter (DAC) for HDTV applications. The proposed 10-bit DAC is composed of a unit decoded matrix for 6 MSBs and a binary weighted array for 4 LSB’s, considering linearity, power consumption, routing area, and glitch energy. A new switching scheme for the unit decoded matrix is developed to improve linearity further. Cascade current sources and differential switches with deglitch latch improve dynamic performance. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.3 LSB and 0.2 LSB, respectively. The converter achieves a spurious-free dynamic range (SFDR) of above 55 dB over a100-MHz bandwidth and low glitch energy of 1.5 pVs. The circuit is fabricated in a 0.25 μm CMOS process and occupies 0.91 mm2. When operating at 200 M Sample/s, it dissipates 82 mW from a 3.3 V power supply.  相似文献   

7.
设计了一个14位刷新频率达400MHz,用于高速频率合成器的低功耗嵌入式数模转换器。该数模转换器采用5+4+5分段式编码结构,其电流源控制开关输出驱动级采用归零编码以提高DAC动态特性。该数模转换器核采用0.18μm1P6M混合信号CMOS工艺实现,整个模块面积仅为1.1mm×0.87mm。测试结果表明,该DAC模块的微分非线性误差是-0.9~+0.5LSB,积分非线性误差是-1.4~+1.3LSB,在400MHz工作频率下,输出信号频率为80MHz时的无杂散动态范围为76.47dB,并且功耗仅为107.2mW。  相似文献   

8.
A low glitch 14-b 100-MHz current output digital-to-analog converter (DAC) is described. In addition to segmentation of the four most significant bits (MSB's) into 15 equally weighted current sources, a proportional-to-absolute-temperature (PTAT) switching voltage is applied to the current steering devices to minimize glitch over temperature. A bidirectional thin-film trim network and high β n-p-n devices reduce the amount of laser trimming required to achieve 14-b accuracy, resulting in less post-trim degradation of DAC linearity over temperature and the life of the chip. The converter has been fabricated in a 4-GHz/1.4-μm BiCMOS technology and exhibits a measured glitch energy of 0.5 pV·s (singlet). Settling time to within ±0.012% of the final value is ⩽20 ns for both rising and falling edges of a full scale step. Spurious free dynamic range (SFDR) for the described converter is 87 dBc at an update rate (fCLK) of 10 MHz and an output frequency (fOUT) of 2.03 MHz. The converter operates from +5 V and -5.2 V supplies and consumes 650 mW independent of conversion rate. The chip size is 4.09×4.09 mm including bond pads and electrostatic discharge (ESD) protection devices  相似文献   

9.
介绍了一种用于数模转换器的电流 电压转换电路。在数模转换器的负载电阻片内集成的情况下 ,利用文中提出的电流 电压转换电路 ,数模转换器实现了要求的宽摆幅电平输出 (全“0”输入时 ,输出低电平 - 3V ;全“1”输入时 ,输出高电平 3 5V)。整个数模转换器电路用 1 2 μm双层金属双层多晶硅n阱CMOS工艺实现。其积分非线性误差为 0 4 5个最低有效位 (LSB) ,微分非线性误差为 0 2LSB ,满摆幅输出的建立时间小于 1μs。该数模转换器使用± 5V电源 ,功耗约为 30mW ,电路芯片面积为 0 4 2mm2 。  相似文献   

10.
This paper presents a high-speed, low-glitch, and low-power design for a 10-bit binary-weighted current-steering digital-to-analog converter (DAC). Instead of using large input buffers to drive a lot of current switches and re-timing latches, the proposed design uses variable-delay buffers with a compact layout to compensate for the delay difference among different bits, and to reduce glitch energy from 132 to 1.36 pV s during major code transitions. The measured spurious free dynamic range (SFDR) has been improved over 10 dB, as compared to DACs without variable-delay buffers. At 250 MS/s update rate, the proposed DAC achieves 56 dB SFDR for 0.67 MHz output frequency and 49 dB SFDR for 94 MHz output frequency with 50 Ω termination. For static performance, the measured integral nonlinearity (INL) and differential nonlinearity (DNL) is less than 1.6 and 1.8 LSB, respectively. The proposed DAC can be used in various applications in industry, including digital video, digital TV, wireless communication system, etc. This chip was implemented in TSMC 1P6M 0.18 μm CMOS technology and dissipates 19 mW from a single 1.8 V power supply.  相似文献   

11.
A 14-bit intrinsic accuracy Q2 random walk CMOS DAC   总被引:1,自引:0,他引:1  
In this paper, a 14-bit, 150-MSamples/s current steering digital-to-analog converter (DAC) is presented. It uses the novel Q2 random walk switching scheme to obtain full 14-bit accuracy without trimming or tuning. The measured integral and differential nonlinearity performances are 0.3 and 0.2 LSB, respectively; the spurious-free dynamic range is 84 dB at 500 kHz and 61 dB at 5 MHz. Running from a single 2.7-V power supply, it has a power consumption of 70 mW for an input signal of 500 kHz and 300 mW for an input signal of 15 MHz. The DAC has been integrated in a standard digital single-poly, triple-metal 0.5-μm CMOS process. The die area is 13.1 mm2  相似文献   

12.
This work describes a 10 b 70 MHz CMOS digital-to-analogue converter (DAC) for video applications. The proposed DAC is composed of a unit decoded matrix for 7 MSBs and a binary weighted array for 3 LSBs, considering linearity, power consumption, routing area and glitch energy. A new switching scheme for the unit decoded matrix is developed to further improve the linearity. Cascode current sources and differential switches with a new deglitching circuit improve the dynamic performance  相似文献   

13.
An 80-MHz 8-bit CMOS D/A converter   总被引:1,自引:0,他引:1  
A high-speed 8-bit D/A converter has been fabricated in a 2-/spl mu/m CMOS technology. In order to achieve high accuracy, a current-cell matrix configuration and a switching sequence called symmetrical switching have been used. The mismatch problem of small-size transistors has been relaxed by this matrix configuration. The linearity error caused by an undesirable current distribution of the current sources has been reduced by symmetrical switching. A high-speed decoding circuit and a fast-setting current source have been developed. The experimental results show that the maximum conversion rate is 80 MHz, a typical DC integral linearity error is 0.38 LSB, a typical DC differential linearity error is 0.22 LSB, and the maximum power consumption is 145 mW. The chip size is 1.85 mm/spl times/2.05 mm.  相似文献   

14.
This paper demonstrates a power efficient design of high-speed Digital-to-Analog Converters (DACs) for wideband communication systems. For Wireless personal area network applications with a 250 MHz signal bandwidth, a 6 bit DAC capable of two times the Nyquist rate sampling is implemented in a current steering segmented 2 + 4 architecture optimized for power efficiency. Along with a proposed master-slave deglitch circuit, several circuit techniques are investigated to improve dynamic performances such as linearity. Implemented in a 0.18 um CMOS process, our DAC achieved a superior conversion performance over the state-of-the-arts, exhibiting integral nonlinearity of less than 0.27 LSB and differential nonlinearity of less than 0.15 LSB. Measured spurious free dynamic range for 251 MHz output signal is 40.92 dB, with total power consumption at 1 GS/s of 6mW, yielding a figure-of-merits of 78.3 pJ/(conversion step*W).  相似文献   

15.
本文设计了一款用于视频中的R2R梯形电阻网络数模转换器。其电路结构包含8位R2R梯形电阻网络DAC、输出放大器、低电平转高电平电路、模拟开关、参考电压和锁存器电路。电路设计是基于CSM0.11μm CMOS Logic工艺,经HSPICE仿真表明,DAC的积分非线性误差(INL)和微分非线性误差(DNL)分别小于1.65LSB和0.23LSB,功耗仅为3.86mW。  相似文献   

16.
In this work an 8-bit DAC is presented which uses a new segmented architecture, where distributed binary cells are re-used in thermometric manner to realize the MSB unit cells. The DAC has been fabricated in 0.18 μm five-metal CMOS n-well process to be embedded in multi-standard reconfigurable wireless transmitters for low-speed applications. The proposed architecture has an inherent ability to reduce midcode glitch like the unary architecture, and the simulated midcode glitch is only 0.01 pV s. Simulation results show that the proposed DAC performs with an integral nonlinearity (INL) of 0.33 LSB and a differential nonlinearity (DNL) of 0.14 LSB. The DAC can achieve a maximum measured SFDR of 65.19 dB for 97.50 kHz signal at a sampling rate of 100 MSPS, without using any calibration or dynamic element matching (DEM) technique. For 1.07 MHz signal the measured SFDR is 56.84 dB at 100 MSPS sampling rate. At 50 MSPS sampling frequency and 146 kHz signal the SFDR of the DAC is 65.90 dB. The measured SFDR at 538 kHz signal is 63.62 dB for a sampling rate of 50 MSPS. Measured third order intermodulation distortion of the DAC is 58.55 dB, for a dual tone test with 1.03 MHz and 1.51 MHz signals at 50 MSPS sampling rate. Low power is also an important aspect in portable wireless devices. For 10.06 MHz signal and 100 MSPS sampling frequency, the power dissipation of the DAC is 20.74 mW with 1.8 V supply.  相似文献   

17.
A self-trimming 14-b 100-MS/s CMOS DAC   总被引:2,自引:0,他引:2  
A 14-b 100-MS/s CMOS digital-analog converter (DAC) designed for high static and dynamic linearity is presented. The DAC is based on a central core of 15 thermometer decoded MSBs, 31 thermometer decoded upper LSBs (ULSBs) and 31 binary decoded lower LSBs (LLSBs). The static linearity corresponding to the 14-b specification is obtained by means of a true background self-trimming circuit which does not use additional current sources to replace the current source being measured during self-trimming. The dynamic linearity of the DAC is enhanced by a special track/attenuate output stage at the DAC output which tracks the DAC current outputs when they have settled but attenuates them for a half-clock cycle after the switching instant. The DAC occupies 3.44 mm×3.44 mm in a 0.35-μm CMOS process, and is functional at up to 200 MS/s, with best dynamic performance obtained at 100 MS/s. At 100 MS/s, power consumption is 180 mW from a 3.3-V power supply, and 210 mW at 200 MS/s  相似文献   

18.
In this paper a 12-bit Nyquist current-steering digital-to-analog converter (DAC) is implemented using TSMC 0.35 μm standard CMOS process technology. The proposed DAC is an essential part in baseband section of wireless transmitter circuits. Using oversampling ratio (OSR) for it leads to avoid use of an active analog reconstruction filter. The optimum segmentation (75%) has been used to get the best DNL and reduce glitch energy. This segmentation ratio guarantees the monotonicity. Higher performance is achieved using a new 3D thermometer decoding method which reduces the area, power consumption and the number of control signals of the digital section. Using two digital channels in parallel, helps reach 1 GHz sampling frequency. Simulations indicate that the DAC has an accuracy better than 10.7-bit for upcoming higher data rate standards (IEEE 802.16 and 802.11n), and a spurious-free-dynamic-range (SFDR) higher than 64 dB in whole Nyquist frequency band. The post layout four corner Monte-Carlo simulated INL is better than 0.74 LSB while simulated DNL is better than 0.49 LSB. The analog voltage supply is 3.3 V while the digital part of the chip operates with only 2.4 V. Total power consumption in Nyquist rate measurement is 144.9 mW. Active area of chip is 1.37 mm2.  相似文献   

19.
基于新型的低压与温度成正比(PTAT)基准源和PMOS衬底驱动低压运算放大器技术,采用分段温度计译码结构设计了一种1.5V8位100MS/s电流舵D/A转换器,工艺为TSMC0.25μm2P5MCMOS。当采样频率为100MHz,输出频率为20MHz时,SFDR为69.5dB,D/A转换器的微分非线性误差(DNL)和积分非线性误差(INL)的典型值分别为0.32LSB和0.52LSB。整个D/A转换器的版图面积为0.75mm×0.85mm,非常适合SOC的嵌入式应用。  相似文献   

20.
一种基于0.35μm CMOS工艺的14位100MSPS DAC设计   总被引:1,自引:0,他引:1  
基于 TSMC 0 .3 5μm CMOS工艺设计了一种工作电压为 3 V/ 5 V的 1 4位 1 0 0 MSPS DAC。 1 4位DAC在 5 0 Ω负载条件下满量程电流可达 2 0 m A,当采样速率为 1 0 0 MHz时 ,5 V电源的满量程条件下功耗为1 90 m W,而 3 V时的相应功耗为 45 m W该 DAC的积分非线性误差 ( IN L )为± 1 .5 LSB,微分非线性误差( DN L)为± 0 .75 LSB。在 1 2 5 MSPS,输出频率为 1 0 MHz条件下的无杂波动态范围 ( SFDR)为 72 d Bc。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号