首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni3V, Ni2V, Ni2V3 and NiV3 were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and the failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone.  相似文献   

2.
Diffusion bonding of TiAl alloys and Ti3SiC2 ceramics were carried out in a vacuum atmosphere. The microstructures and mechanical properties of the bonded joints were investigated. Results showed that three coherent intermetallic layers formed in the TiAl/Ti3SiC2 joints during bonding process. The compound layer adjacent to Ti3SiC2 substrate was indicated to be Ti5Si3, in which brittle fracture of the joints took place during shear strength test. The properties of diffusion bonded joints were greatly improved attributed to the formation of a good transition in the joint as well as the relief of the residual stress when using Ni foil as interlayer. Formation mechanisms of the compound layers during bonding process were discussed. Shear test results showed that the maximum shear strength reached 52.3 MPa. Corresponding fractograph indicated that the crack mainly propagated along Ti3SiC2 substrate adjacent to the bonding zone, accompanied with an intergranular and transgranular fracture mode.  相似文献   

3.
Friction spot welding (FSpW) is a relatively new solid state joining technology developed by GKSS. In the present study, FSpW was applied to join the 6061-T4 aluminum alloy sheet with 2 mm thickness. The microstructure of the weld can be classified into four regions, which are stir zone (SZ), thermo-mechanically affected zone (TMAZ), heat affected zone (HAZ) and the base material (BM), respectively. Meanwhile, defects such as bonding ligament, hook and voids are found in the weld, which are associated to the material flow. The hardness profile of the weld exhibits a W-shaped appearance and the minimum hardness is measured at the boundary of TMAZ and SZ. Both the tensile/shear strength and cross-tension strength reach the maximum of 7117.0 N and 4555.4 N at the welding condition of the rotational speed of 1500 rpm and duration time of 4 s. Compared to cross-tension strength, the tensile/shear strength were stable with the variation of processing parameters. Three different fracture modes are observed under tensile/shear loading, which are plug type fracture, shear fracture and plug-shear fracture. There are also there different fracture modes under cross-tension loading, which are plug type fracture (on the upper sheet), nugget debonding and plug type fracture (on the lower sheet).  相似文献   

4.
 Y2O3-based nanocomposites were fabriacted by hot-press and the microstructures and mechanical properties were investigated. Transmission-electron-microscope observations revealed that the SiC particles were distributed both within Y2O3 matrix grains and at the grain boundaries. Significant mechanical properties improvements were identified particularly at high temperatures above 1000 oC both in air and inert atmospheres. Received: 2 January 1997 / Accepted: 27 March 1997  相似文献   

5.
Adnan Çal?k 《Materials Letters》2009,63(28):2462-2465
The diffusion bonding of a Ni3Al intermetallic alloy to an austenitic stainless steel has been carried out at temperatures 950, 1000 and 1050 °C. The influence of bonding temperature on the microstructural development and hardness across the joint region has been determined. The microvoids in the interface have been found to decrease with increasing bonding temperature. The intermetallic phase Al3Ni has been detected at the Ni3Al side of the diffusion couple. Diffusion of Cr and Fe from the stainless steel to the Ni3Al alloy has been observed.  相似文献   

6.
Ti-6Al-4V couples have been diffusion bonded by hot isostatic pressing (HIPping) after vacuum brazing was used to seal the periphery of the bonding samples so that no encapsulation was required during HIPping. Analytical scanning electron microscopy was used to assess the microstructure of the HIPped interface and tensile and fatigue properties of bonded samples were compared with those of the bulk starting material. The tensile properties of the bonds were shown to be comparable with those of the bulk material, but the fatigue life was slightly downgraded. The fatigue fractures were initiated by inclusions on the bonding interface, caused by contamination before bonding, but the fatigue cracks did not propagate along the bonding interface indicating a strong bond. It is concluded that this technique of vacuum brazing plus HIPping could be used for encapsulation-free HIPping to produce complex-shaped components.  相似文献   

7.
Magnesium and aluminium were joined through diffusing bonding with a Ni interlayer prepared by plasma spraying for the first time. Examination of the microstructure and phase constitution of interfacial regions indicated that Mg–Al reaction was successfully prevented in the presence of the Ni interlayer. With the elevation of temperature, a reaction layer of Mg2Ni intermetallic was formed at Mg/Ni interface but few Al–Ni intermetallic was generated at Al/Ni interface. The mechanical test results showed that the tensile strength of the Mg/Al joint was substantially improved compared to that of the direct joint of Mg and Al. A maximum value of 5.8?MPa was obtained at 420°C for the joint with Ni interlayer.  相似文献   

8.
Diffusion bonding of AZ91 alloy with a silver interlayer was carried out at 480 °C for different times under 1 MPa in a vacuum of 2 × 10−3 Pa. Shear test was applied to measure the shear strengths of the joints in the room temperature. The shear strength values of all bonded samples were found around 65–70 MPa. SEM–EDS studies indicated that the melting occurred along the interface of bonded samples as a result of transfer of atoms between the interlayer and the matrix during bonding. XRD results confirmed that the interlayer dissolved in the interface of joints. Investigations of the fracture surfaces showed that a good bonding was obtained by plastic deformation.  相似文献   

9.
In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the microstructure and mechanical properties of single-lap joints between DP780 and DP600. The results show that the weld joints consist of three regions including base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). The grain size and martensite volume fractions increase in the order of BM, HAZ and FZ. The hardness in the FZ is significantly higher than hardness of base metals. Tensile properties of the joints were described in terms of the failure modes and static load-carrying capabilities. Two distinct failure modes were observed during the tensile shear test of the joints: interfacial failure (IF) and pullout failure (PF). The FZ size plays a dominate role in failure modes of the joints.  相似文献   

10.
The effects of Sn addition on the as-cast microstructure, mechanical properties and casting fluidity of the ZA84 magnesium alloy are investigated. The results indicate that adding 0.5–2.0 wt.%Sn to the ZA84 alloy not only can result in the formation of Mg2Sn phase but also can refine the Mg32(Al, Zn)49 phase and suppress the formation of Mg32(Al, Zn)49 phase, and with the increase of Sn amount from 0.5 wt.% to 2.0 wt.%, the morphology of Mg32(Al, Zn)49 phase gradually changes from coarse continuous and/or quasi-continuous net to relatively fine quasi-continuous and/or disconnected shapes. In addition, adding 0.5–2.0 wt.%Sn to the ZA84 alloy can improve the tensile and creep properties, and casting fluidity of the alloy. Among the Sn-containing ZA84 alloys, the ZA84 alloy added 1.0 wt.%Sn exhibits the best ultimate tensile strength, elongation and casting fluidity while the ZA84 alloy added 2.0 wt.%Sn has the best yield strength and creep properties.  相似文献   

11.
12.
刘蒙恩  盛光敏  尹丽晶 《功能材料》2012,43(17):2401-2403,2407
采用瞬间液相过冷连接方法对AZ31镁合金/锌中间层/5083铝合金进行连接,利用SEM、XRD、拉伸实验机和微观硬度计对结合界面的微观组织、力学性能进行了表征。结果表明,以锌作中间层,采用瞬间液相过冷连接可以实现AZ31镁合金与5083铝合金的有效连接,接头的最高抗拉强度可以达到38.5MPa,随着低温扩散保温时间的延长,扩散层厚度随之增加,接头的抗拉强度也随之升高;接头的拉伸断口属于脆性断裂,结合界面形成了MgZn2和少量的Mg17Al12金属间化合物;结合界面的微观硬度最高达170。  相似文献   

13.
Diffusion bonding of duplex stainless steel to medium carbon steel was carried out with different temperatures for sound bonds. In the bonding process, relatively intermediate temperatures such as 750, 800, 850 and 900 °C were used with a bonding time of 30 min. In this study, microstructural changes and mechanical properties in the interface region of duplex stainless steel and medium carbon steel couples were determined. The results showed that, in interface region, Cr23C6 was formed on the stainless steel side, while ferrite formation was observed on the carbon steel side as a result of mutual diffusion of C and Cr.  相似文献   

14.
15.
Nickel-based superalloy K417G samples with 2.2 mm gap are bonded by transient liquid-phase infiltration (TLI). The microstructure and tensile properties of TLI joint have been investigated. The results show that the nonuniform microstructure is obtained in the TLI joints. The voids, Cr5B3 borides and (Cr, W)B borides are presented in the TLI region. The no isothermal solidification of the transient TLI joint leads to the formation of Cr5B3 borides. The tensile properties of TLI joint samples are lower than that of base sample, especially the ductility. The observation of fracture surfaces show that the Cr5B3 borides are the main cause, which leads to the decrease of ductility. The Cr5B3 borides can act as the crack initiation and also accelerate the propagation of cracks during the deformation.  相似文献   

16.
In the present work, aluminium alloy AA2024-T3 thin sheets were joined by the Friction Stir Welding – FSW – process. Butt joints were obtained in 1.6 mm sheets, using an advancing speed of 700 mm/min. These joints were characterised by optical, scanning electron microscopy, tensile and fatigue mechanical tests. The results showed that the resulting microstructure is free of defects and the tensile strength of the welded joints is up to 98% of the base-metal strength. Fatigue tests result indicates an equivalent stress intensity factor (kt) of approximately 2.0 for the welded samples. Consequently, the FSW process can be advantageous compared to conventional riveting for airframe applications.  相似文献   

17.
Mechanical and wear properties of severely deformed Al–12Si alloy by equal-channel angular extrusion/pressing (ECAE/P) were investigated. Multi-pass ECAE processing of the as-cast alloy substantially increased both its strength and ductility. The increase in the tensile and yield strength values after six ECAE passes were about 48% and 87%, respectively. The sample after six ECAE passes exhibited 10% elongation before rupture, which was about five times higher than that of the as-cast one. The improvement in both strength and ductility was mainly attributed to the changes of the shape, size and distribution of the eutectic silicon particles along with the breakage and refined of the large α-Al grains during multi-pass ECAE processing. However, the wear test results surprisingly showed that the ECAE process decreased the wear resistance of the alloy, although there was improvement in strength and ductility values. This was mainly attributed to the tribochemical reaction leading to oxidative wear with the abrasive effect in Al–Si alloys during sliding. The oxide layer played a dominant role in determining the wear resistance of the sample in both as-cast and ECAE-processed states, and it masked the effect of strengthening of alloy structure on the wear resistance.  相似文献   

18.
Submerged friction stir welding (FSW) in cold and hot water, as well as in air, was carried out for 7050 aluminum alloys. The weld thermal cycles and transverse distributions of the microhardness of the weld joints were measured, and their tensile properties were tested. The fracture surfaces of the tensile specimens were observed, and the microstructures at the fracture region were investigated. The results show that the peak temperature during welding in air was up to 380 °C, while the peak temperatures during welding in cold and hot water were about 220 and 300 °C, respectively. The temperature at the retreated side of the joint was higher than that at the advanced side for all weld joints. The distributions of microhardness exhibited a typical “W” shape. The width of the low hardness zone varied with the weld ambient conditions. The minimum hardness zone was located at the heat affected zone (HAZ) of the weld joints. Better tensile properties were achieved for joint welded in hot water, and the strength ratio of the weld joint to the base metal was up to 92%. The tensile fracture position was located at the low hardness zone of the weld joints. The fracture surfaces exhibited a mixture of dimples and quasi-cleavage planes for the joints welded in cold and hot water, and only dimples for the joint welded in air.  相似文献   

19.
K. Bourenane  A. Keffous 《Vacuum》2007,81(5):663-668
We investigated the electrical characteristics of two different Schottky diode as Pt/SiC and Pt/porous SiC, elaborated on highly resistif hot-pressed p-type 6H-SiC supplied by Goodfellow. The Schottky diode was characterized in air ambient and in vacuum, this latter could be used for exhaust gas monitoring as gas sensors for different gas (O2, H2, CO, CO2 and hydrocarbure). The result shows an ideality factor in range 1.1-1.5 with a barrier height varying between 0.780 and 0.950 eV function of the ambient characterization. The result indicated clearly the dependence of electrical parameters on the surface whose Schottky contact was realized (Pt) and on the ambient where the electrical tests were performed.  相似文献   

20.
Formation process of the bonding joint in Ti/Al diffusion bonding   总被引:1,自引:0,他引:1  
The process of the formation of Ti/Al diffusion bonding joints was studied by means of scanning electron microscopy (SEM), X-ray diffractometry (XRD) and shear strength measurement. Pure titanium and pure aluminum were used as bonding couples. The results show that the process of joint formation can be separated into four stages, and the product of the diffusion reaction is only TiAl3 under a particular range of holding time. There is a delay time tD before TiAl3 is generated, which is mainly affected by temperature. The joint strength depends on the metallurgical combination percentage and the interface structure in the diffusion zone, and it can reach or even exceed the strength of pure aluminum after TiAl3 forms a layer. The position where shear fracture occurs depends on interface structure in the diffusion zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号