首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of fatigue damage in corrosive environments is an important problem, because such environments reduce fatigue strength far below the typical fatigue strength determined in air. In this study, rotating bending fatigue tests of plain specimens in NaCl solution were carried out using a heat-treated 0.45% carbon steel, in order to clarify the physical background of corrosion fatigue damage. The emphasis is to perform the successive observations by the plastic replica method. The results show that corrosion pits are generated at the early stages of cycling, then most of them grow with further cycling until a crack is initiated from each corrosion pit. The initiation of corrosion pits from slip bands is only observed in the case when the stress range is relatively large, in the range of stress under which slip bands are produced in air. After initiation of a crack, a crack propogates by accompanying frequent interaction and coalescence with other cracks. The growth rate of an especially small crack in NaCl solution is larger than that in air. However, the growth rate of a comparatively large crack is smaller in NaCl solution than in air. Moreover, the statistical characteristics of corrosion fatigue behavior were investigated by exhibiting the distributions of crack initiation life and crack length.  相似文献   

2.
Abstract— In order to study the relation between the scatter characteristics of small crack growth behaviour and fatigue life, rotatory bending fatigue tests of smooth specimens were carried out using 0.21% carbon steels of different ferrite grain sizes. Fifteen to eighteen specimens were fatigued at each stress amplitude, and the initiation and propagation behaviour of the cracks which led to the final fractures were examined for all the specimens. The physical basis of scatter in fatigue life was investigated, based on the successive observation of fatigue damage on the surface using the plastic replica technique, followed by an analysis of the data assuming a Weibull distribution. A statistical investigation of the physical basis of scatter in relation to the ferrite grain size was performed, i.e. the distributions for crack initiation life, crack propagation life, fatigue life and growth rate of small cracks. Finally, the fluctuation of crack growth rate was studied in relation to the application of a crack growth law for microstructurally small cracks.  相似文献   

3.
This paper is aimed at evaluating the influence of bi‐modal and lamellar microstructures on the behaviour of small cracks emanating from notches in α+β titanium Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on double‐edge‐notched specimens. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material yield stress. Crack closure effects were measured by an extensometric technique and discussed. Variations in crack aspect ratio were determined and considered in the ΔK calculation. Corresponding results were discussed by considering the effect of the yielded region at the notch tip calculated by elastic–plastic finite element modelling of the fatigue tests. The importance of the bi‐modal and lamellar microstructures on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. The crack growth rate data obtained were compared with those measured using standard C(T) specimens (long crack).  相似文献   

4.
Abstract— Single-pitted specimens of an HSLA steel, were tested in laboratory air and in 1 M NaCl solution to study the influence of a corrosive environment on its fatigue life.
The growth of fatigue cracks and the partitioning of the fatigue life into fatigue crack initiation and fatigue crack propagation were studied by photographing the pit and the cracks developing on it periodically during testing. Non-propagating or dormant surface cracks were not observed in this study. Fractography using SEM showed the locations of fatigue crack initiation. The mechanisms of corrosion fatigue were studied by performing tests in 1 M NaCl at different test frequencies. Corrosion pits proved to be crack initiation sites. Hydrogen embrittlement was found to be unimportant in the corrosion fatigue of HSLA steel in this study. The 1 M NaCl corrosive environment appeared to reduce the fatigue life of this material by a dissolution mechanism. The effect of pit depth was studied by testing specimens having various pit depths. An effect of pit size was apparent. Fatigue life decreased with increasing pit depth. Pit depth, rather than the ratio of pit depth to pit diameter, influenced fatigue behaviour. A non-damaging pit depth was found.  相似文献   

5.
This paper presents the results of fretting fatigue tests carried out on Ti6Al4V sheet specimens in contact with carbide rod in a cylinder-on-flat contact configuration. A new methodology of carrying out fretting fatigue experiments is proposed and successfully implemented using a pin-in-dovetail and pin-in-hole configuration. The advantage of this configuration is the simplicity and ease of application. The tests are carried out on MTS 810 at different loads, constant frequency (30 Hz) and ambient conditions. These tests reveal that the crack initiation and propagation are dependent on the applied load and the configuration of the contact. At low loads, non-propagating cracks are observed in the pin-in-dovetail configuration using metallurgical microscope. At high loads these cracks become longer but are still non-propagating. Numerical simulation using elastic–plastic material model is carried out to determine stress intensity factor and the mode of crack propagation. Maximum principal stress damage criteria approach is used to predict the crack initiation sites under different loads and a strong correlation with experimental results is observed. The crack propagation is simulated using XFEM, which successfully simulates the non-propagating crack length.  相似文献   

6.
This paper is aimed at evaluating the behaviour of small cracks emanating from notches in the Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on prismatic specimens with a central hole. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 56.6 and 100% of the 0.2% yield stress of the material. Microstructural effects were discussed. To this purpose a specific device based on the ‘in situ’ detection of cracks by photomicroscopy was developed. Corresponding results were analysed quantitatively considering the effect of the yielded region at the notch tip by elastic–plastic finite element modelling. Furthermore, information regarding the sites of fatigue crack initiation and propagation path were discussed on the basis of careful fractographic analysis of the specimens. The importance of the two phase α, β microstructure on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. Mechanically and microstructurally long cracks were correlated by linear‐elastic fracture mechanics.  相似文献   

7.
Abstract— When estimating fatigue damage quantitatively it is important to clarify its physical basis. In this study, rotating bending fatigue tests of a heat-treated 0.45% carbon steel were carried out in 3% NaCl solution, in order to clarify the physical basis of corrosion fatigue damage from successive observations of plastic replicas. The results show that corrosion pits are generated during the early stages of cycling, then most of them grow with further cycling until a crack is initiated from each corrosion pit. The initiation of corrosion pits from slip bands is observed only in the case when the stress range is relatively large, and in the range of stress for which slip bands are produced in air. After initiation of a crack, the crack propagates by frequent interactions and coalescence with other cracks. The growth rate of an especially small crack in NaCl solution is larger than that in air. However, the growth rate of a comparatively large crack is smaller in NaCl solution than in air.  相似文献   

8.
Corrosion fatigue behaviour of a medium strength structural material was studied in air and in 3.5% NaCl solution. Emphasis was placed on the study of corrosion pit formation and the development of cracks from pits. Pitting and crack propagation were quantified throughout the fatigue loading thereby allowing a model to be developed that included the stages of pitting and the pit-to-crack transition in order to predict the fatigue life. The results showed that a large number of corrosion pits with small size form at a very early stage in the fatigue lifetime. The number of pits and subsequent cracks was found to be higher at higher stress levels leading to multiple crack development and coalescence. When compared to air, fatigue life in a corrosive environment was significantly reduced at low stress levels due to pitting damage, indicating a dominant role of corrosion over that of mechanical effects. The corrosion fatigue model proposed shows good agreement with the experimental test data at lower stress levels but predicts more conservative lifetimes as the stress increases. Kitagawa–Takahashi diagram was produced for both test environments where it is indicated that the fatigue limit can be eliminated in a corrosive environment.  相似文献   

9.
Theoretical and experimental investigations of crack initiation and crack propagation under thermal cyclic loading are presented. For the experimental investigation a special thermal fatigue test rig has been constructed in which a small circular cylindrical specimen is heated up to a homogeneous temperature and cyclically cooled down under well defined thermal and mechanical boundary conditions by a jet of cold water. At the end of the cooling phase the specimen is reheated to the initial temperature and the following cycle begins. The experiments are performed with uncracked and mechanically precracked specimens of the German austenitic stainless steel X6CrNi 1811.

In the crack initiation part of the investigation the number of load cycles to initiate cracks under thermal cyclic load is compared to the number of load cycles to initiate cracks under uniaxial mechanical fatigue loading at the same strain range as in the cyclic thermal experiment. The development of initiated cracks under thermal cyclic load is compared with the development of cracks under uniaxial mechanical cyclic load.

In the crack propagation part of the investigation crack growth rates of semi-elliptical surface cracks under thermal cyclic loading are determined and compared to suitable mechanical fatigue tests made on compact-tension and four-point bending specimens with semi-elliptical surface cracks. The effect of environment, frequency, load shape and temperature on the crack growth rate is determined for the material in mechanical fatigue tests.

The theoretical investigations are based on the temperature distribution in the specimen, which is calculated using finite element programs and compared to experimental results. From the temperature distribution, elastic and elastic-plastic stress distributions are determined taking into account the temperature dependence of the material properties. The prediction of crack propagation relies on linear-elastic fracture mechanics. Stress intensity factors are calculated with the weight function method and crack propagation is determined using the Paris relation.

To demonstrate the quality of the crack growth analysis the experimental results are compared to the prediction of crack propagation under thermal cyclic load.  相似文献   

10.
Abstract— The propagation behaviour of fatigue cracks emanating from pre-cracks was numerically simulated to evaluate the development of crack closure with crack growth. The crack opening stress intensity factor at the threshold was approximated as a function of the applied stress and the amount of crack extension. Pre-cracked specimens of a medium-carbon steel with a small surface crack and a single-edge crack were fatigued to investigate experimentally the initiation and propagation of cracks from pre-cracks. Crack closure was dynamically measured by using an interferometric strain/displacement gauge. The threshold condition of crack initiation from pre-cracks was given by a constant value of the effective stress intensity range which was equal to the threshold value for long cracks. The cyclic R -curve was constructed in terms of the threshold value of the maximum stress intensity factor as a function of crack extension approximated on the basis of the experimental and numerical results. The cyclic R -curve method was used to predict the fatigue thresholds of pre-cracked specimens. The predicted values of the fatigue limits for crack initiation and fracture, and the length of non-propagating cracks agreed very well with the experimental results.  相似文献   

11.
In order to clarify the effect of the atmospheric conditions on fatigue damage, rotary bending fatigue tests were carried out on smooth specimens of a normalized 0.37% carbon steel in controlled laboratory air. The air conditions used in the tests were moist air at 20 °C, moist air at 35 °C and dry air at 35 °C. The influence of atmosphere on crack initiation and propagation behaviour was investigated in detail based on successive observations of the surface. Experimental results showed that the fatigue life was superior at 20 °C compared to 35 °C by a factor of 2, while the effect of moisture was small compared to that of temperature. The statistical investigation of crack initiation and propagation behaviour indicated that the temperature strongly affects the crack initiation process; conversely, moisture plays an important role in the propagation process of cracks smaller than 0.3  mm. Moreover, the distribution characteristics of crack initiation life, crack propagation life, fatigue life and crack growth rate were analysed by assuming either a Weibull distribution or a log-normal distribution.  相似文献   

12.
This paper is focused on the effect of sea water corrosion on the gigacycle fatigue strength of a martensitic–bainitic hot rolled steel R5 used for manufacturing off-shore mooring chains for petroleum platforms in the North Sea. Crack initiation fatigue tests in the regime of 106 to 1010 cycles were carried out on smooth specimens under three different environment conditions: (i) without any corrosion (virgin state) in air, (ii) in air after pre-corrosion, and (iii) in-situ corrosion-fatigue under artificial sea water flow. A drastic effect of sea water corrosion was found: the median fatigue strength beyond 108 cycles is divided by 5 compared to virgin state specimens. The crack initiation sites were corrosion pits caused by pre-corrosion or created during corrosion-fatigue under sea water flow. Furthermore some sub-surface and internal crack initiations were observed on specimens without any corrosion (virgin state). Crack propagation curves were obtained in mode I in air and under sea water flow. Calculation of the stress intensity factor at the tip of cracks emanating from hemispherical surface pits combined with the Paris–Hertzberg–Mc Clintock crack growth rate model showed that fatigue crack initiation period represents most of the fatigue life in the VHCF regime. Additional original experiments have shown physical evidences that the fatigue strength in the gigacycle regime under sea water flow is mainly governed by the corrosion process with a strong coupling between cyclic loading and corrosion.  相似文献   

13.
利用扫描电镜联合液压伺服试验机,并借助于Walker公式研究了应力比对预腐蚀不同时间航空高强LD2CZ铝合金疲劳裂纹扩展的影响,在应力比分别为0.05,0.5,0.7的条件下对预腐蚀0,15,30d的LD2CZ铝合金单边缺口板状试样进行了疲劳加载试验,得到了其疲劳裂纹扩展速率曲线,并拟合出了Walker公式中的材料常数。结果表明:裂纹扩展速率会随着应力比的增加以及腐蚀损伤的加深而增大,拟舍得到的Walker公式可用来定量化地表征应力比和腐蚀损伤对疲劳裂纹扩展速率的影响。  相似文献   

14.
15.
The present paper is aimed at investigating the behaviour of fatigue cracks emanating from edge-notches for two different microstructures of the Ti-6246 alloy, produced by two specific thermo-mechanical treatments and defined as β-annealed and β-processed, respectively. Pulsating four point bending tests were performed on double-edge-notched specimens. The initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material’s yield stress. Plastic deformation at the notch tip initially produced a local stress redistribution followed by elastic shake down due to the high cyclic strain hardening rates exhibited by both microstructures, as confirmed by finite element modelling. Crack closure effects, measured by an extensometric technique, and variations in crack aspect ratio were considered in the ΔK calculation. The obtained crack growth rate data were compared with those of long cracks measured on standard C(T) specimens as well as of microcracks measured on round, unnotched S-N type of specimens to evaluate the intrinsic fatigue crack propagation resistance of the two microstructures. The contribution of notch plasticization to crack closure was estimated by finite element modelling.  相似文献   

16.
Fracture mechanics and scale effects in the fatigue of railway axles   总被引:1,自引:0,他引:1  
Fatigue of railway axles is one of the basic problems of fatigue. However, in spite of the criticality of this component, modern approaches have not been used for addressing a critical revision of traditional design. The scope of this paper is to study the scale effects in fatigue limit and in crack growth rate for a high strength steel used for high speed railway axles.Fatigue limit tests on micro-notched specimens led to the determination of fatigue thresholds for small cracks of the examined steel. This allowed us to successfully analyse the `scale effect' and the fatigue strength of full-scale axles in terms of threshold stress for short cracks emanating from small non-metallic inclusions.A series of crack propagation tests on small scale specimens lead to the definition of an EPFM crack propagation model which has been successfully compared with propagation data on full-scale components. These results support the application of the crack propagation model for the determination of axle inspection intervals.  相似文献   

17.
The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests were conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plasticity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions. Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminium alloys was developed and demonstrated using the crack-closure model.  相似文献   

18.
An extensive experimental campaign was carried out to understand the influence of the multiaxial stress state and load ratio on the matrix-dominated damage initiation and evolution in composite laminates under fatigue. Tubular glass/epoxy specimens were tested under combined tension–torsion loadings with different values of the load ratio and biaxiality ratio (shear to transverse stress ratio). Results are reported in terms of S–N curves for the first crack initiation and Paris-like diagrams for crack propagation, showing a strong influence of both parameters. Fracture surfaces were also analysed to identify the damage mechanisms at the microscopic scale responsible for the initiation and propagation of transverse cracks. Eventually, a crack initiation criterion presented by the authors in a previous work is applied to the experimental data showing a good agreement.  相似文献   

19.
The effect of an aqueous chloride environment upon the development and growth of short fatigue cracks from smooth specimen surfaces has been studied under fully reversed torsional fatigue loading conditions. Crack initiation and growth has been monitored using a plastic replication technique enabling a full history of cracking characteristics to be recorded. Corrosion fatigue conditions were achieved by complete immersion in a 0.6 M NaCl solution, of nominal pH value 6.0, with specimens corroding at the free corrosion potential. Variations to these conditions were obtained by the addition of concentrated hydrochloric acid enabling test solution pH values to be altered, typically pH values of 3.5 and 2.0 were obtained. Further information regarding the effects of the environment on the early stages of crack development were obtained by conducting two stage alternate immersion type testing conditions. Evaluation of these effects through previously established Elastic-Plastic Fracture Mechanics models shows that the environment plays a major role during the early stages of microstructure-dominated crack growth particularly as cracks approach major barriers to propagation and at decreasing levels of applied shear stress.  相似文献   

20.
Graphite nodules in spheroidal graphite cast iron (SGI) play a vital role in fatigue crack initiation and propagation. Graphite nodules growth morphology can go through transitions to form degenerated graphite elements other than spheroidal graphite nodules in SGI microstructure. These graphite particles significantly influence damage micromechanisms in SGI and could act differently than spheroidal graphite nodules. Most of the damage mechanism studies on SGI focused on the role of spheroidal graphite nodules on the stable crack propagation region. The role of degenerated graphite elements on SGI damage mechanisms has not been frequently studied. In this work, fatigue crack initiation and propagation tests were conducted on EN‐GJS‐500‐14 and observed under scanning electron microscope to understand the damage mechanisms for different graphite shapes. Crack initiation tests showed a dominant influence of degenerated graphite elements where early cracks initiated in the microstructure. Most of the spheroidal graphite nodules were unaffected at the early crack initiation stage, but few of them showed decohesion from the ferrite matrix and internal cracking. In the crack propagation region, graphite/ferrite matrix decohesion was the frequent damage mechanism observed with noticeable crack branching around graphite nodules and the crack passing through degenerated graphite elements. Finally, graphite nodules after decohesion acted like voids which grew and coalesced to form microcracks eventually causing rapid fracture of the remaining section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号