首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polyimide (PI) composites filled with short carbon fibers (SCFs), micro SiO2, and graphite (Gr) particles were prepared by means of hot press molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring-on-block test rig. Experimental results revealed that single incorporation of graphite and SCF significantly improve the tribological properties of the PI composites, but micro SiO2 was harmful to the improvement of the friction and wear behavior of the PI composite. It is found that a combinative addition of Gr, SCF and micro SiO2 was the most effective in improving the friction-reducing and anti-wear abilities of the PI composites. Research results also show that the filled PI composites exhibited better tribological properties under higher PV-product.  相似文献   

2.
To improve the friction and wear behavior of basalt fabric reinforced phenolic composites, single graphite or nano-SiO2 and both of them were incorporated. The tribological properties of the resulting composites under different sliding conditions were investigated systematically on a model ring-on-block test rig. The friction and wear mechanisms of the composites were studied through analyzing the worn surfaces and transfer films by a scanning electron microscopy (SEM). Experimental results showed that graphite (Gr) was more beneficial than nano-SiO2 in improving the tribological properties of basalt fabric composites (BFC) when they were singly incorporated. It is well worth noting that the friction and wear behavior of the filled composites was improved further when nano-SiO2 and graphite were added together, indicating that there was a synergistic effect between them. Tribological tests under different sliding conditions revealed that the BFC/Gr/SiO2 composites seemed to be more suitable for tribological applications under higher sliding speed and load.  相似文献   

3.
The effects of several carbon series additions including graphite (Gr), carbon fiber (CF) and carbon nanotube (CNT) on the microstructures and tribological behaviors of polyimide-based (PI-based) composites under sea water lubrication were investigated systematically. Results showed that the incorporation of any filler improved the wear resistance of polyimide (PI) under sea water lubrication, but did not decrease the friction coefficient. Especially the combined incorporation of 10%Gr, 10%CF and 5%CNT (in volume) was the most effective in improving the anti-wear properties of PI. This suggested that there existed a synergetic effect among the three carbon series additions on improving the wear resistance of PI. During the friction and wear process, the carbon additions played different roles in improving the wear resistance of PI-based composites. CF with high compressive strength can carry the main load applied on the sliding surfaces to inhibit the wear of PI matrix. CNT can decrease the stress concentration around CF and further protect CF from being broken. Gr in the form of much thinner layer can not only improve the loading capacity, but also play the same role of CNT to avoid CF carrying too much load. More importantly, Gr, CF and CNT worked synergistically to condense the microstructure of PI-based composite and ameliorate the interfacial combination between all fillers and PI matrix, which well explained why the PI–10%Gr–10%CF–5%CNT composite had excellent tribological properties, even under heavy load or high sliding speed.  相似文献   

4.
An epoxy-based nanocomposite containing graphite powder (7 vol%) and nano-scale TiO2 (4 vol%) was developed for tribological evaluation. A series of composites containing additional fillers such as short carbon fibers (SCF), Aramid and polytetrafluoroethylene (PTFE) particles was developed and evaluated in adhesive and low amplitude oscillating wear modes. The incorporation of SCF and Aramid particles resulted in a remarkable improvement in the sliding wear resistance. However, SCF impaired the low amplitude oscillating wear resistance. The further addition of PTFE to the SCF filled nanocomposites reduced the friction and wear under both wear conditions. However, an adverse effect of PTFE was found for the Aramid particles filled nanocomposites. Under sliding conditions, the lowest wear rate and coefficient of friction showed the 2–4 vol% PTFE filled SCF nanocomposite. Aramid particles containing nanocomposites (without PTFE) exhibited the best wear and friction behavior under low amplitude oscillating wear conditions among the selected composites. The wear mechanisms were studied by scanning electron microscopy.  相似文献   

5.
The objectives of this research article is to evaluate the mechanical and tribological properties of polyamide66/polypropylene (PA66/PP) blend, graphite (Gr) filled PA66/PP, nanoclay (NC) filled PA66/PP and NC plus short carbon fiber (NC + SCF) filled PA66/PP composites. All composites were fabricated using a twin screw extruder followed by injection molding. The mechanical properties such as tensile, flexure, and impact strengths were investigated in accordance with ASTM standards. The friction and sliding wear behaviour was studied under dry sliding conditions against hard steel on a pin-on-disc apparatus. Scanning electron micrographs were used to analyze the fracture morphologies. From the experimental investigation, it was found that the presence of NC and SCF fillers improved the hardness of PA66/PP blend. Further, the study reveals that the tensile and flexural strength of NC + SCF filled PA66/PP was higher than that of PA66/PP blend. Inclusion of micro and nanofillers reduced the wear rate of PA66/PP blend. The wear loss of the composites increased with increasing sliding velocity. The lowest wear rate was observed for the blend with nanoclay and SCF fillers. The wear rates of the blends with micro/nanofillers vary from 30–81% and lower than that of PA66/PP blend. The wear resistance of the PA66/PP composites was found to be related to the stability of the transfer film on the counterface. The results have been supplemented with scanning electron micrographs to help understand the possible wear mechanisms.  相似文献   

6.
In this paper, either graphite (Gr) or carbon nanotubes (CNTs), or both of them were incorporated into carbon fabric reinforced phenolic (CFRP) composites, preparing by a dip-coating and heat molding process, the tribological properties of the resulting composites were investigated using a block-on-ring arrangement. The worn surfaces were observed by scanning electron microscope to understand the mechanism. Experimental results showed that the optimal Gr was more beneficial than CNTs in improving the tribological properties of the CFRP composites when they were singly incorporated. It is well worth noting that the friction and wear behavior of the CNTs-filled CFRP composites were improved further when Gr was added, indicating that there is a synergistic effect between them. Tribological tests under different sliding conditions revealed that the Gr and CNTs-filled CFRP composites seemed to be the most suitable for tribological applications under higher sliding speed and load, and oil lubrication.  相似文献   

7.
The tribological properties of carbon fiber reinforced polyimide (PI) composites with different MoS2 containing sliding against GCr15 steel were comparatively evaluated on an M-2000 model ring-on-block test rig. The wear mechanisms were also comparatively discussed, based on scanning electron microscopic examination of the worn surface of the PI composites and the transfer film formed on the counterpart. It was found that small incorporation of MoS2 was harmful to the improvement of friction and wear behaviors of carbon fiber reinforced PI composites. However, it was found that the increasing filler of MoS2 significantly improved the wear resistance and decreased the friction coefficient of carbon fiber reinforced PI composites. It was also found that the tribological properties of MoS2 and short carbon fiber reinforced PI composites were closely related with the sliding condition such as sliding rate and applied load.  相似文献   

8.
The friction and wear characteristics of three-dimensional (3D) braided carbon fiber-epoxy (C3D/EP) composites under lubricated sliding conditions against a quenched medium-carbon steel counterface were studied. Wear tests were performed under different loads at two velocities. Comparative wear tests under dry conditions were carried out to investigate the influence of lubrication. Tribological properties of the C3D/EP composites with various fiber loadings and two different fiber-matrix adhesion strengths were assessed. It was found that the lubricated contact promoted lower wear rates and friction coefficients. Compared to dry sliding, the tribological performance of the C3D/EP composites under lubrication was less dependent on fiber content, fiber-matrix bonding, load, and velocity than dry sliding. The worn surfaces of the C3D/EP composites were analyzed by scanning electron microscopy (SEM) to explore the relevant mechanisms.  相似文献   

9.
In this research work, mechanical and tribological characteristics of ortho cresol novalac epoxy (OCNE)-based nanocomposites filled with nanoparticulates of SiC, Al2O3, and ZnO have been investigated. Also, in these investigations, the influence of wear parameters such as applied normal load, sliding velocity, filler contents, and sliding distance have been explored. The experimental plan for four factors at three levels using face centered composite design (CCD) has been employed by the response surface methodology (RSM) technique. The friction and wear tests were carried out using a pin on disc wear test apparatus under dry sliding conditions. The hardness and flexural strength of nano ortho cresol novalac epoxy composites filled with nano (SiC, Al2O3, and ZnO) particulates increases with an increase in the filler contents. Whereas, the tensile strength of these nanocomposites increases with an increase in the filler contents from 1 to 2 wt%, and with a further increase in filler contents the tensile strength decreases. The results of the study also showed that (2 wt%) filler contents bring superior mechanical and tribological properties. The lowest coefficient of friction and specific wear rate were found with nano Al2O3-filled composites. Also, the wear mechanisms of these nanocomposites were studied using a scanning electron microscope (SEM) equipped with an EDS analyzer.  相似文献   

10.
The tribological properties of polyimide (PI) and PI/fluorinated graphene (FG) nanocomposites, as a new class of graphene reinforced polymer, are investigated using a ball-on-disk configuration under different lubricated conditions of dry sliding, water lubrication and oil lubrication. Experimental results reveal that single incorporation of FG can effectively improve the tribological performance of PI under all the three conditions. In addition, compared to the results under dry sliding, the phenomenon that the friction coefficient decreases while the wear rate increases under water lubrication condition is observed and researched in detail. The worst anti-wear performance under water-lubricated condition can be ascribed to the fact that the water can be adsorbed by the polar imide radicals of the PI and PI/FG nanocomposite, therefore leading to the property deterioration of the PI and PI/FG nanocomposite coatings.  相似文献   

11.
通过模压成型制备了碳纤维与空心微珠共混改性的聚酰亚胺复合材料, 采用MRH-3型摩擦磨损试验机研究了空心微珠含量、滑动速度及载荷对复合材料摩擦学性能的影响, 并对其磨损形貌及机制进行了分析。结果表明: 空心微珠-碳纤维/聚酰亚胺复合材料摩擦学性能优于其单独填充的聚酰亚胺基复合材料; 空心微珠含量对共混改性的复合材料摩擦系数影响不大, 但其磨损率随着空心微珠含量的增加先减小后增大; 15%空心微珠-10%碳纤维(质量分数)共混增强的复合材料的减摩耐磨性能最佳; 随着滑动速度提高, 空心微珠-碳纤维/聚酰亚胺复合材料的摩擦系数下降, 磨损率增大; 空心微珠-碳纤维/聚酰亚胺复合材料摩擦系数随着载荷增加先下降后上升, 而磨损率则随着载荷增加而增大; 空心微珠-碳纤维/聚酰亚胺的主要磨损机制在较低载荷时为磨粒磨损, 在较高载荷时为粘着磨损和磨粒磨损。  相似文献   

12.
Polyetheretherketone (PEEK) composites reinforced with carbon fibers (CFs) and nano-ZrO2 particles were prepared by incorporating nanoparticles into PEEK/CF composites via twin-screw extrusion. The effects of nanoparticles on the mechanical and wear properties of the PEEK/CF composites were studied. The results showed that the incorporation of nano-ZrO2 particles with carbon fiber could effectively enhance the tensile properties of the composites. The tensile strength and Young’s modulus of the composites increased with the increasing nano-ZrO2 content. The enhancement effect of the particle was more significant in the hybrid reinforced composites. The compounding of the two fillers also remarkably improved the wear resistance of the composites under water condition especially under high pressures. It was revealed that the excellent wear resistance of the PEEK/CF/ZrO2 composites was due to a synergy effect between the nano-ZrO2 particles and CF. CF carried the majority of load during sliding process and prevented severe wear to the matrix. The incorporation of nano-ZrO2 effectively inhibited the CF failures through reducing the stress concentration on the carbon fibers interface and the shear stress between two sliding surfaces. It was also indicated that the wear rates of the hybrid composites decreased with the increasing applied load and sliding distance under water lubrication. And low friction coefficient and low wear rate could be achieved at high sliding velocity.  相似文献   

13.
The friction and wear properties of micrometer and nanometer TiO2 particle-filled polytetrafluoroethylene (PTFE)/polyimide (PI) composites were studied in this paper. The effect of filler contents (0.5%, 1%, 1.5%, 2%, 3%, 5% and 7 vol.%) on the tribological properties was examined. The transfer films and the worn surfaces of the PTFE/PI composites filled with micrometer and nanometer TiO2 particles were investigated by using a scanning electron microscope (SEM). Experimental results show that anti-wear properties of the PTFE/PI composites can be improved greatly by filling nanometer TiO2 particles. The wear rate of 1.5% nanometer TiO2 filled composite is the lowest, which is about 52% lower than that of PTFE/PI. In the case of micrometer TiO2 filler, the friction coefficient and wear rates increase with increasing filler volume fractions under identical test conditions. It was also found that the wear mechanism of micrometer TiO2 particle-filled PTFE/PI is mainly severe adhesion and abrasive wear, while that of nanometer TiO2 particle-filled PTFE/PI is mainly slight abrasive wear.  相似文献   

14.
梯度自润滑复合材料在不同滑动摩擦下的摩擦学特性   总被引:3,自引:0,他引:3  
梯度自润滑复合材料是一种新型润滑材料,利用粉末冶金工艺设计和制备了该材料,考察了其在不同摩擦条件下的摩擦学特性,并对其摩擦磨损机理进行了分析和研究.结果表明:梯度自润滑复合材料随着复合固体润滑剂含量的增多,摩擦学性能明显改善,但润滑剂含量过高将导致材料表面硬度过低;该材料适用于高载倚下的润滑部件;脂润滑条件下,复合固体润滑剂与润滑脂结合在摩擦面上形成的膏状润滑膜使梯度自润滑复合材料的摩擦学性能显著改善;在脂润滑高载荷条件下,梯度自润滑复合材料的磨损主要发生在磨损初期,之后磨损极小,摩擦系数也趋于减小.  相似文献   

15.
Graphene and polystyrene functionalized graphene (PS-graphene) had been synthesized, and were employed as fillers to improve the anti-wear property and load-carrying capacity of Nomex fabric/phenolic composites. Pin-on-disk type wear tests show that the friction coefficients and wear rates for both graphene and PS-graphene filled fabric/phenolic composites were reduced, when compared with unfilled fabric composite. Moreover, it was found that the 2 wt% PS-graphene filled Nomex fabric/phenolic composites exhibited the optimal tribological properties. The enhancement on the wear property of graphene and PS-graphene filled Nomex fabric composite was mainly due to the self-lubrication of graphene and the easy-formed transfer film on the counterpart pin. We also investigated the effect of filler content, applied load, and sliding speed on the tribological properties of the Nomex fabric/phenolic composites.  相似文献   

16.
纳米SiO2填充短炭纤维/环氧复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
研究了纳米SiO2填充短炭纤维/环氧复合材料的摩擦磨损性能。为了提高纳米粒子的分散性,对其进行了表面接枝改性。用磨损试验机评价了复合材料的摩擦学性能,发现当纳米粒子质量分数为5%,纤维质量分数为10%时,复合材料具有最低的摩擦系数和比磨损率。用扫描电镜观察了磨损面的形貌,研究了各种材料在相同条件下被硝酸刻蚀的程度,并用...  相似文献   

17.
In this experimental study, aluminium (Al)-based graphite (Gr) and silicon carbide (SiC) particle-reinforced, self-lubricating hybrid composite materials were manufactured by powder metallurgy. The tribological and mechanical properties of these composite materials were investigated under dry sliding conditions. The results of the tests revealed that the SiC-reinforced hybrid composites exhibited a lower wear loss compared to the unreinforced alloy and Al–Gr composites. It was found that with an increase in the SiC content, the wear resistance increased monotonically with hardness. The hybridisation of the two reinforcements also improved the wear resistance of the composites, especially under high sliding speeds. Additionally, the wear loss of the hybrid composites decreased with increasing applied load and sliding distance, and a low friction coefficient and low wear loss were achieved at high sliding speeds. The composite with 5 wt.% Gr and 20 wt.% SiC showed the greatest improvement in tribological performance. The wear mechanism was studied through worn surface and wear debris analysis as well as microscopic examination of the wear tracks. This study revealed that the addition of both a hard reinforcement (e.g., SiC) and soft reinforcement (e.g., graphite) significantly improves the wear resistance of aluminium composites. On the whole, these results indicate that the hybrid aluminium composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, predominantly in the aerospace and automotive engineering sectors.  相似文献   

18.
Aluminium matrix composites with multiple reinforcements (hybrid AMCs) are finding increased applications because of improved mechanical and tribological properties and hence are better substitutes for single reinforced composites. Few investigations have been reported on the tribological behaviour of these composites with % reinforcement above 10%. The present study focuses on the influence of addition of graphite (Gr) particulates as a second reinforcement on the tribological behaviour of aluminium matrix composites reinforced with silicon carbide (SiC) particulates. Dry sliding wear tests have been performed to study the influence of Gr particulates, load, sliding speed and sliding distance on the wear of hybrid composite specimens with combined % reinforcement of 2.5%, 5%, 7.5% and 10% with equal weight % of SiC and Gr particulates. Experiments are also conducted on composites with % reinforcement of SiC similar to hybrid composites for the sake of comparison. Parametric studies based on design of experiments (DOE) techniques indicate that the wear of hybrid composites decreases from 0.0234 g to 0.0221 g as the % reinforcement increases from 3% to 7.5%. But the wear has a tendency to increase beyond % reinforcement of 7.5% as its value is 0.0225 g at.% reinforcement of 10%. This trend is absent in case of composites reinforced with SiC alone. The values of wear of these composites are 0.0323 g, 0.0252 g and 0.0223 g, respectively, at.% reinforcement of 3%, 7.5% and 10% clearly indicating that hybrid composites exhibit better wear characteristics compared to composites reinforced with SiC alone. Load and sliding distance show a positive influence on wear implying increase of wear with increase of either load or sliding distance or both. Whereas speed shows a negative influence on wear indicating decrease of wear with increase of speed. Interactions among load, sliding speed and sliding distance are noticed in hybrid composites and this may be attributed to the addition of Gr particulates. Such interactions are not present in composite reinforced with SiC alone. Mathematical models are formulated to predict the wear of the composites.  相似文献   

19.
In efforts to investigate the influence of the surface texturing on the Si3N4/TiC ceramic, laser surface texturing (LST) was performed on the Si3N4/TiC ceramic by an Nd:YAG laser and different geometrical characteristics of regular-arranged micro-grooved textures were fabricated on the surfaces. The tribological properties of the textured and smooth samples were investigated by carrying out sliding wear tests against steel balls under dry condition using a ball-on-disk tribometer. Effect of surface texturing on the stress distribution was studied by finite element method (FEM). Results show that the textured surfaces exhibited lower friction coefficient and excellent anti-wear properties compared with smooth surfaces. The tribological characteristics depended greatly on the size and density of the micro-grooves, and the geometrical characteristics of the surface textures have a significant effect on the tribological behavior. Among the patterns investigated, the wavy-grooved samples exhibit the lowest friction coefficient and wear rate; and a large texture density may be the best for reduction of friction and wear of textured samples. While, the wear rate of balls sliding against textured surfaces is larger than that of balls sliding against smooth surfaces. FEM results show that surface texturing can improve the stress distribution of contact interfaces and reduce stress concentration.  相似文献   

20.
A series of polyurethane (PU)/potassium titanate whiskers (PTW) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The PTW is modified by 2,4-diisocyanatotoluene (2,4-TDI). The effect of the PTW content on the mechanical and tribological properties of the PU composites was studied. Tensile strength of the PU composites increased with the addition of PTW. The friction and wear experiments were tested on a MRH-3 model ring-on-block test rig at different sliding speeds and loads under dry sliding and water lubrication. Experimental results revealed that the small content of PTW contributed to largely improve the tribological properties of the PU composites. The coefficient of friction (COF) of the composites increased and the wear rate value decreased with increasing PTW. Scanning electron microscopic (SEM) investigations showed that the worn surfaces of the PTW-reinforced PU composites was smoother than pure polyurethane under given load and sliding speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号