首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nano-sized 3C-SiC was synthesized using sol-gel method. The silica bearing sol was prepared using fumed silica and alkaline ethylene glycol which on hydrolysis resulted in a gel. The gel was mixed with nano-sized carbon particles (obtained from soot) and heat treated in 1300-1580 °C temperature range. The formation of 3C-SiC began at ~ 1400 °C and at 1580 °C it was observed to be the major phase while small amount of 2H-SiC was also present. The silicon carbide synthesized between 1400 and 1580 °C had particles in 30-50 nm range and crystallite size between 15 and 17 nm.  相似文献   

2.
Bundle-like multi-walled carbon nanotubes (MWNTs) were melting-mixed with high-density polyethylene (HDPE). MWNTs are distributed in the matrix mostly isolated. Agglomerates are observed at higher concentrations. The electric conductivity of the composites follows the theory of a percolation system, and the charge transport shows different models. The temperature dependence of the electrical conductivity for the composites shows that both positive (PTC) and negative (NTC) temperature coefficients appear near the melting temperature of matrix. The NTC behaviors within the temperature range below the melting point depend on the MWNTs concentration and the NTC intensity increases with the increasing MWNTs concentration.  相似文献   

3.
碳黑、微珠粉填充UHMWPE摩擦学性能研究   总被引:3,自引:0,他引:3  
比较了碳黑、微珠粉填充UHMWPE复合材料摩擦学行为,用MM-200型摩擦磨损试验机考察了载荷及对摩偶件粒度对碳黑、微珠粉填充UHMWPE复合材料摩擦磨损性能的影响,利用扫描电子显微镜观察磨损表面形貌并分析了磨损机理.结果表明:碳黑可以提高UHMWPE抗磨损的性能,其耐磨性比纯UHMWPE好;而微珠粉填充UHMWPE的耐磨性比纯UHMWPE差,两种材料填充的UHMWPE磨损量随着载荷的增大而加大;对摩偶件的粒度对两种材料填充UHMWPE复合材料的摩擦磨损性能影响较大,偶件表面粒度增大,它们磨损量显著增大.两种材料填充UHMWPE复合材料的摩擦系数相近,且较纯UHMWPE的摩擦系数大,特别是载荷增大和对摩偶件粒度增大时,UHMWPE复合材料的摩擦系数急剧增大.  相似文献   

4.
This work introduces an experimental activity related to the realization of an epossidic nanostructured material that develops the function of covering for electronic circuits in aeronautical field. This covering meets the demand of protection of these circuits from possible troubles of electromagnetic nature. In order to realize this covering we used an epoxy resin as matrix (Epon 828) loaded with conductive nanofillers or carbon nanotubes (Cnts). To check the efficiency of the coating we have considered the carbon black, filler widely used as a conductive covering for screenings. We have considered different percentages of the different fillers, precisely 0.1%, 0.25% and 0.5% wt (% valued in comparison to the weight of the resin). From every mixture 12 samples have been obtained (the size of every sample is 10 mm x 10 mm x 10 mm). Every sample has been subjected to electrical measurements, that have concerned the measurement of current intensity and resistance (so as to allow the evaluation of the enhancement of the conductivity), through the application of different values of voltage. The results have demonstrated that the epoxy matrix loaded with Cnts yields higher values of electrical conductivity than the same matrix loaded with carbon black.  相似文献   

5.
In this study the electrical and mechanical properties of microfibrillar polypropylene (PP)/polyamide6 (PA6) blend filled with super conductive carbon black (CB) have been investigated. In situ microfibrillar PP/PA6 composites filled with CB are produced using a single screw extruder equipped with a spinneret. Glycidyl methacrylate (GMA) grafted polypropylene (PP-g-GMA) is used as the compatibilizer. To investigate the effects of extensional flow on the microstructure, electrical and mechanical properties, three adaptors with various convergence angles were designed, prepared and applied between the extruder and the spinneret. To optimize the effects of processing and material parameters on the electrical and mechanical properties, the Taguchi method of experimental design is used. Material and processing factors which are studied include: concentration of PA6, compatibilizer level, CB concentration, drawing speed of melt spinning line, adaptor angle, order of mixing and temperature profile along the extruder. The results show an increase in DC conductivity of up to 1011 times in comparison with pure PA6, by increasing the concentration of CB, drawing speed, adaptor angle and optimizing other parameters. By optimizing processing and material factors studied here, strength of microfibrillar structured composites is increased of up to 80% in comparison to pure PP.  相似文献   

6.
The annealing effects on the structural and electrical properties of fluorinated amorphous carbon (a-C:F) thin films prepared from C6F6 and Ar plasma are investigated in a N2 environment at 200 mTorr. The a-C:F films deposited at room temperature are thermally stable up to 250 °C, but as the annealing temperature is increased beyond 300 °C, the fluorine incorporation in the film is reduced, and the degree of crosslinking and graphitization in the film appears to be enhanced. At the annealing temperature of 250 °C, the chemical bond structures of the film are unchanged noticeably, but the interface trapped charges between the film and the silicon substrate are reduced significantly. The increased annealing temperature contributes the decrease of both the interface charges and the effective charge density in the a-C:F film. Higher self-bias voltage is shown to reduce the charge density in the film.  相似文献   

7.
Acrylonitrile–butadiene–styrene (ABS)/ethylene–propylene–diene monomer (EPDM) composites reinforced with graphene nanoplatelets (GN) were fabricated by the direct melt blending, dried premixing and wet premixing process, respectively. The electrical resistivity, tensile strength, impact strength, microstructure, thermal stability, glass transition temperature and morphology of fracture surface of composites were investigated. In case of direct melt blending process, the maximum tensile strength with minimum impact strength is obtained. But this result is reversed while the fabrication of composites by wet premixing process. SEM results show that GN is prior to distributing in the continuous ABS phase. The percolation threshold could be significantly decreased from 11.8 wt% to 6.6 wt% when prepare composites by wet/dried premixing process instead of melt blending.  相似文献   

8.
The attainment of both high toughness and superior electrical conductivity of epoxy composites is a crucial requirement in some engineering applications. Herein, we developed a strategy to improve these performances of epoxy by combining the multi-wall carbon nanotubes (MWCNTs) and spherical particles. Two different types of spherical particles i.e. soft submicron-rubber and rigid nano-silica particles were chosen to modify the epoxy/MWCNT composites. Compared with the binary composites with single-phase particles, the ternary composites with MWCNTs and spherical particles offer a good balance in glass transition temperature, electrical conductivity, stiffness and strength, as well as fracture toughness, exhibiting capacities in tailoring the electrical and mechanical properties of epoxy composites. Based on the fracture surface analysis, the complicated interactions between multiscale particles and the relative toughening mechanisms were evaluated to explain the enhancement in fracture toughness of the ternary composites.  相似文献   

9.
Carbon nanotubes (CNTs) have high strength and modulus, large aspect ratio, and good electrical and thermal conductivities, which make them attractive for fabricating composite. The poly(biphenyl dianhydride-p-phenylenediamine) (BPDA/PDA) polyimide has good mechanical and thermal performances and is herein used as matrix in unidirectional carbon nanotube composites for the first time. The strength and modulus of the composite increase by 2.73 and 12 times over pure BPDA–PDA polyimide, while its electrical conductivity reaches to 183 S/cm, which is 1018 times over pure polyimide. The composite has excellent high temperature resistance, and its thermal conductivity is beyond what has been achieved in previous studies. The improved properties of the composites are due to the long CNT length, high level of CNT alignment, high CNT volume fraction and good CNT dispersion in polyimide matrix. The composite is promising for applications that require high strength, lightweight, or high electrical and thermal conductivities.  相似文献   

10.
A low-density three-dimensional cellular-matrix composite reinforced with woven carbon fabric (3DCMC), was fabricated by means of a pressure-quenching molding technique with nitrogen gas as the blowing agent. Epoxy resins in the interstices of yarns in the 3DCMC samples were vacated during the foaming process and needle shaped voids were also generated between fibers in yarns. The average density of the 3DCMC samples was about 103 kg/m3, and their density reduction was 28–37% compared with a regular matrix composite with the same preform. The 3DCMC has 32–42% higher specific tensile strength, 14–37% greater specific tensile modulus, a lower specific flexure strength but 35% higher specific tangent modulus in 3-point bending, a 30–40% higher specific impact energy absorption at an impact velocity around 120 m/s and a similar specific energy absorption at about 220 m/s. Meanwhile, the 3-point bending and impact test results of 3DCMC showed that they have different fracture mechanisms from that of 3DRMC.  相似文献   

11.
For tissue engineering purpose two gelatin based polyester urethane scaffolds of different compositions were prepared from lactic acid, polyethylene glycol 400 (PEG 400) and characterized by FTIR, XRD for their mechanical and morphological properties using SEM and optical microscopic analyses. Degradation and swelling studies of gelatin based polyester urethane scaffolds in phosphate buffer saline (PBS) were performed. Human keratinocyte cells were cultured within these scaffolds, which showed good cell adherence and proliferation.  相似文献   

12.
Epoxy nanocomposites of different content of carbon nanofibers up to 1 wt.% have been fabricated under room temperature and refrigerated curing conditions. The composites were studied in terms of mechanical and electrical properties. Flexural modulus and hardness were found to increase significantly in refrigerated samples due to prevention of aggregates of nanofibers during cure condition. Increase and shifting in G-band by Raman spectra of these samples confirmed stress transfer and reinforcement between epoxy matrix and carbon nanofiber. Electrical conductivity improved by 3–6 orders after infusing carbon nanofibers in insulating epoxy. Room temperature samples acquired higher conductivity that was attributed to network formation by aggregates of nanofibers along the fiber alignment direction as revealed by electron microscopic studies.  相似文献   

13.
Multiphase composite materials filled with multiwall carbon nanotubes (MWCNTs), short nickel-coated carbon fibers and millimeter-long carbon fibers with various weight fractions and compositions are developed and used for the design of wide-band thin radar-absorbing screens. The effective complex permittivity of several composite samples is measured in the frequency range from 8 GHz to 18 GHz. The obtained results show that the addition of the MWCNTs into the mixture allows tuning the EM properties of the composite filled with the short nickel-coated fibers. Numerical simulations are also performed in order to design new radar-absorbing shields. Single-layer and bi-layer thin dielectric Salisbury screens are designed to exhibit minimum reflection coefficient at 10 GHz and at 15 GHz, and maximum bandwidth at −10 dB. It results that the total thickness of the screen can be reduced below 2 mm by using a lossy sheet made with the composite filled with MWCNTs and nickel-coated carbon fibers, whereas the bandwidth at −10 dB can exceed 6 GHz in a bi-layer structure.  相似文献   

14.
Morphology, electrical properties and conductive mechanisms of polyamide 6/polypropylene/muti-walled carbon nanotubes (PA6/PP/MWNTs) composites with varied compositions and different blending sequences were investigated. The MWNTs were found to be located preferentially in the PA6 phase in the composites, whatever the PA6 was continuous or dispersed phase. While the incorporation of MWNTs changed the dispersed PA6 phase from spherical to elongated or irregular shape. The PA6/PP/MWNTs (20/80/4) composite with a dispersed PA6 phase exhibited a higher electrical conductivity in comparison with the PA6/PP/MWNTs (50/50/4) composite which has a co-continuous phase and exhibits double percolation. This was due to the formation of a conductive MWNTs networks in the PA6/PP/MWNTs (20/80/4) composite as proved by means of field emission scanning electron microscopy and rheological measurements. The morphology and electrical properties of the PA6/PP/MWNTs (20/80/4) composites were significantly influenced by blending sequences. When blending 3.9 phr MWNTs with a pre-mixed PA6/PP/MWNTs (20/80/0.1) composite, the dispersed PA6 phase formed an elongated structure, which was beneficial to the electrical properties.  相似文献   

15.
Two kinds of zinc oxide (ZnO) powders, which are ZnO whisker (w-ZnO) and nanosized ZnO (n-ZnO), were used to prepare the composites with a matrix of low-density polyethylene (LDPE). Dielectric constants and losses of the composites were measured in a frequency range of 1-10 MHz. The dielectric constants and losses increase with increasing w-ZnO content in composites. Modified w-ZnO has a remarkable effect on dielectric properties of the composites. Dielectric constants and losses of the composites containing n-ZnO are larger than those containing w-ZnO under the same content. The results can be explained by nanoscale effects. Some theories of mixing laws are also referred to the dielectric properties of composites in this paper.  相似文献   

16.
Preparation and microstructural evolution of carbon/carbon composites   总被引:1,自引:0,他引:1  
Carbon/carbon (C/C) composites with characteristic matrix-crack pattern are key intermediate materials for preparation of carbon/silicon carbide (C/C–SiC) composites. The C/C composites were prepared by pyrolyzing carbon fiber/phenolic resin preform. The change of density, open porosity, mass loss and specially the microstructural evolution of the composites during pyrolysis at 200–900 °C was analyzed, which provided important information for preparation of C/SiC composites by infiltration of silicon. An increasing number of regular spacing cracks were formed above 400 °C. After pyrolysis at 900 °C, the pore volume was 0.17 cm3/g, and the pores in the radius range of 2.44–122.19 μm occupied 81% of the pore volume.  相似文献   

17.
18.
We review experimental and theoretical work on electrical percolation of carbon nanotubes (CNT) in polymer composites. We give a comprehensive survey of published data together with an attempt of systematization. Parameters like CNT type, synthesis method, treatment and dimensionality as well as polymer type and dispersion method are evaluated with respect to their impact on percolation threshold, scaling law exponent and maximum conductivity of the composite. Validity as well as limitations of commonly used statistical percolation theories are discussed, in particular with respect to the recently reported existence of a lower kinetic (allowing for re-aggregation) and a higher statistical percolation threshold.  相似文献   

19.
The electrostrictive properties of a polyether-based polyurethane elastomer and its corresponding composites filled with conductive carbon black (CB) were studied by measuring the thickness strain SZ induced by external electric fields E. For films with thicknesses of approximately 50 μm, the apparent electrostrictive coefficient M was measured at low electric fields, ? 4 V/μm, and different CB contents (up to a volume fraction of 2%). Dielectric measurements in AC mode were performed in order to determine the percolation threshold fc, which was 1.25 v%. This optimal volume fraction yielded a remarkable threefold increase in M, associated with an increase of the dielectric constant by a factor 7, in comparison with pure PU. This enhancement of the electric field-induced strain and apparent electrostriction was mainly triggered by an increase of the dielectric constant, even if the intrinsic electrostriction coefficient Q was decreased. The nanocomposites thus seem to be very attractive for low-frequency electromechanical applications. Above fc, their conductivity was raised and their electrostrictive activity lost. Finally, there is a good agreement between the experimentally determined dependence on the CB content of the M coefficient and the theoretical estimation calculated from dielectric and mechanical measurements.  相似文献   

20.
Multi-walled carbon nanotube (MWCNT)-filled silicone rubber (SR) composites were prepared by solvent evaporation method, with different MWCNT concentrations from 0.5 wt% to 6.5 wt%. Alternating current (AC) electrical properties of samples with interdigital electrodes were measured in the frequency range from 20 Hz to 1 MHz. Impedance spectroscopy analysis reveals a frequency-independent percolation transition between 2.0 wt% and 2.9 wt%. Samples above the percolation threshold exhibit more regular variations: the magnitude of impedance decreases gradually with frequency in the low-frequency range, and then decreases as a power law beyond a critical frequency, with the exponent in a limited range indicating the AC universality of disordered solids; the plots of real and imaginary parts of impedance fit semicircles well in the complex plane, implying semiconductive behaviours. Over the concentration range tested, a multi-stage circuit model consisting of resistor–capacitor (RC) networks is proposed to simulate the electrical responses of samples. The validity of the modelling approach is verified by comparing simulation results to experimental results, and is further supported by the analysis of the characteristic frequency. The use of equivalent circuits in modelling provides a further insight into the conducting network inside nanocomposites and more valuable guidance for the design of correlative devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号