首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biaxial fatigue tests were performed on thin-walled tubular 1045 steel specimens in a test fixture that applied internal and external pressure and axial load. There were two test series, one in which constant amplitude fully reversed strains (CAS) were applied and another in which large periodic compressive overstrain (PCO) cycles causing strains normal to the crack plane were inserted in a constant amplitude history of smaller strain cycles. Ratios of hoop strain to axial strain of λ = ?1, ?0.625, ?ν and +1 were used in each test series. Fatigue crack growth behaviours under CAS and PCO histories were compared, and revealed that the morphology of the fracture surface near the crack tip and the crack growth rate changed dramatically with the application of the compressive overstrains. When the magnitude of the compressive overstrains was increased, the height of the fracture surface irregularities was reduced as the increasing overstrain progressively flattened the fracture surface asperities near the crack tip. The reduced asperity height was accompanied by drastic increases in crack growth rate and decreases in fatigue life. Using a pressurizing device attached to the confocal scanning laser microscope (CSLM), crack opening measurements were obtained. Crack opening measurements showed that the biaxial cracks were fully open at zero internal pressure for block strain histories containing in-phase PCO cycles of yield stress magnitude. Therefore, for the shear-strained samples, there was no crack face interference and the strain intensity range was fully effective. For PCO tests (with biaxial strain ratios of ?0.625 and +1), effective strain intensity data were obtained from tests with positive stress ratios for which cracks did not close. A number of strain intensity parameters derived from well-known fatigue life parameters were used to correlate fatigue crack growth rates for the various strain ratios investigated. Predicted fatigue lifetimes based on a fatigue crack growth rate prediction program using critical shear plane parameters showed good agreement with the experimental fatigue life data.  相似文献   

2.
A series of symmetric torsional fatigue with axial constant stress tests, a kind of multiaxial fatigue test, was conducted on oligo‐crystalline 316L stainless steel thin wire, which was less than 3.5 grains across diameter of 200 μm. The material presents significant cyclic hardening under symmetric torsion cycling, and hardening is more obvious with the increasing shear strain amplitude. However, symmetric torsional cycle with constant axial stresses tests characterize rapid initial hardening and then gradually softening until fatigue failure. The axial stress has a great effect on torsional fatigue life. Fractography observation shows a mixed failure mode combined torsional fatigue with tensile strain because of axial tensile stress. A newly proposed model with axial stress damage parameter is used to predict the torsional fatigue life with constant axial stress of small scale thin wire.  相似文献   

3.
Abstract— Fatigue tests that simulate an autofrettaged thick-walled pressure vessel with an external groove under pulsating internal pressure loading conditions were performed using specimens taken from an autofrettaged thick-walled pressure vessel. Load-controlled simulation fatigue tests using rectangular, elliptic, and shot peened elliptic grooved specimens were performed for three different autofrettage levels of 50, 75, and 100% overstrains. In order to estimate the fatigue life of the thick-walled pressure vessel subjected to pulsating internal pressure, the local strain approach was considered to assess the crack formation life. A cyclic stress-strain relation and fatigue damage models determined from strain-controlled low cycle fatigue tests were employed to estimate the fatigue life of the autofrettaged thick-walled pressure vessel. Larger local stresses and strains were obtained from the Neuber's rule compared to the linear rule and these led to conservative fatigue life estimations. Estimated fatigue lives were obtained within factors of 2 to 4, compared to the experimental fatigue lives determined from the simulation fatigue tests.  相似文献   

4.
Fatigue behavior of brass was studied at a constant deformation rate of 5.6 × 10−3 s−1 to understand the cyclic behavior and fatigue life under cyclic torsional deformation. Strains were in the range of 0.35 to 4.2%. In the as-drawn condition, it was found that the cyclic hardening/softening behavior strongly depends on the strain amplitude. For low strain amplitude, cyclic saturation occurred after an initial cyclic hardening stage, but for high strain amplitude, saturation could not be reached. Cyclic stress-strain (CSS) curve showed the presence of three distinct regions with a short quasi-plateau region in the intermediate amplitude range. Quantitative fatigue damage was assessed by microscopic observations of surface cracks.  相似文献   

5.
This article discusses cyclic hardening and fatigue behaviors of stainless steel 304L, the behavior of which is greatly influenced by prior loading. Effects of loading sequence, mean strain and mean stress, and pre-straining (PS) were investigated using constant amplitude as well as step and random loading tests. Contrary to common expectations, fatigue lives in strain-controlled mean strain tests were significantly affected by the mean strain, in spite of mean stress relaxation. PS induced considerable hardening and led to different results on fatigue life, depending on the test control mode. Secondary hardening was observed in some tests, characterized by a continuous increase in the stress response. Possible mechanisms for this behavior are also discussed. To correlate fatigue life data of a material such as stainless steel with strong deformation history effect, it is shown that a damage parameter with both stress and strain is required. The Fatemi–Socie (FS) parameter as such a parameter is shown to correlate the data under different control modes and loading conditions.  相似文献   

6.
Abstract— The fatigue strength of notched specimens of a rotor steel was examined under variable torsional loading which simulates turbine-generator oscillations resulting from the high speed reclosing of transmission-line circuit breakers. The local stress-strain response at a notch root was analysed using Neuber's rule and the resulting complex strain sequences applied to smooth specimens. Using the rain flow analysis and the linear summation rule, fatigue lives of the smooth specimens were successfully predicted from constant amplitude fatigue life data in association with the cyclic stress-strain curve obtained by the incremental step method. Experimental crack initiation lives for notched specimens subjected to variable torsional loading were in excellent agreement with the theoretical curves derived from results on smooth specimens. According to the view that fatigue damage is equated to crack length, the propagation life of a mode II crack along the notch root was predicted to be actually coincident with the life to crack initiation at the notch root denned in this study, i.e. the life at the stage of finding a continuous circumferential crack.  相似文献   

7.
Fatigue tests were conducted on S45C steel under fully reversed strain control conditions with axial/torsional ( at ) and torsional/axial ( ta ) loading sequences. The linear damage value (n1/N1+n2/N2) was found to depend on the sequence of loading mode ( at or ta ), sequence of strain amplitude (low/high or high/low) and life fraction spent in the first loading. In general, at loading yields larger damage values than ta loading and the low–high sequence of equivalent strain leads to larger damage values than the high–low sequence. The material exhibits cyclic softening under axial cyclic strain. Cyclic hardening occurs in the torsion part of ta loading, which elevates the axial stress in the subsequent loading, causing more damage than in pure axial fatigue at the same strain amplitude. Fatigue life is predicted based on the linear damage rule, the double linear damage rule, the damage curve approach and the plastic work model of Morrow. Results show that overly conservative lives are obtained by these models for at loading while overestimation of life is more likely for ta loading. A modified damage curve method is proposed to account for the load sequence effect, for which predicted lives are found to lie in the factor‐2 scatter band from experimental lives.  相似文献   

8.
This paper discusses cyclic deformation and fatigue behaviours of stainless steel 304L and aluminium 7075‐T6 under variable amplitude loading using strain‐controlled as well as load‐controlled tests. Load sequence effects were investigated in step tests with high‐low and low‐high sequences. For stainless steel 304L, strong hardening induced by the first step of the H‐L sequence significantly affects the fatigue behaviour, depending on the test control mode used. For periodic overload tests of stainless steel 304L, hardening due to the overloads was progressive throughout life and more significant than in H‐L step tests. For aluminium 7075‐T6, no effect on deformation behaviour was observed due to periodic overloads. However, the direction of the overloads was found to affect fatigue life, as tensile overloads led to longer lives, while compressive overloads led to shorter lives. Deformation and fatigue behaviours under random loading were also studied for the two materials. To correlate a broad range of fatigue life data for a material with strong deformation history effect, such as stainless steel, it is shown that a damage parameter with both stress and strain is required. The Smith‐Watson‐Topper parameter as such a parameter is shown to correlate the data reasonably well under different control modes and loading conditions.  相似文献   

9.
The fatigue performance of electro‐discharge machined Ti‐6Al‐4V and, more specifically, the effect of cyclic damage on the static and dynamic tensile properties of the material have been investigated. In a first step, fatigue failure was studied. Afterwards, tensile tests were performed on specimens that had been previously subjected to cyclic loading during predefined fractions of the fatigue life. In addition to conventional experiments at quasi‐static strain rate, dynamic tests were performed using a split Hopkinson tensile bar setup. The edges of some of the specimens were removed after cyclic loading to discriminate between the effects of damage at the edges and in the bulk of the material. Results revealed that early fatigue failure is due to the growth of cracks on the machined edges of the specimens. Edge cracks can randomly reduce fracture strain and energy absorbing capacity. However, cyclic damage does not affect the tensile properties of the bulk material.  相似文献   

10.
Deformation and failure behaviour of FeE460 and AlMg4.5Mn under multiaxial proportional loading with constant and variable amplitudes To calculate the fatigue life-to-crack initiation of engineering components under combined cyclic loading, experimentally secured knowledge on the cyclic deformation and failure behaviour of the materials used under the certain multiaxial cyclic stress and strain conditions are required. To obtain this, strain-controlled fully reversed experimental tests at tensional, torsional and combined loading with constant and variable amplitudes have been conducted using thin-walled tube specimens of FeE460 and AlMg4.5Mn. Experimental tests on standard uniaxially loaded hourglass specimens have also been conducted to study specimen form effects. Cyclic deformation behaviour can be uniformly described by the stabilised cyclic σ-ε-curve, if stresses and strains are expressed as equivalent values according to the von Mises criterion. Failure behaviour at constant and variable amplitude loading is characterized by the initiation and growth of short cracks at right angle to the direction of the greatest principal stress (mode I) in the case of tensional or combined loading and by short crack growing in both shear stress directions (mode II+III) in the case of torsional loading. At fully reversed constant amplitude loading, all three types of load can be described by one constant amplitude strain life-to-crack initiation curve. At variable amplitude loading (notch strain simulation with gaussian spectrum, H0=105), the experimental fatigue life-to-crack initiation values are lower than estimated values based on Miner-calculations using an equivalent stress-strain supported PSWT-N-curve. The question of mean stresses and their evaluation is discussed.  相似文献   

11.
An experimental procedure to estimate damage evolution and remaining fatigue life of metals associated with fatigue loading is presented. Experimental phase involves uniaxial tension–compression fatigue tests performed with solid API 5L X52 and tubular carbon steel 1018 specimens subjected to both constant and variable amplitude loading. A correlation between the so-called damage parameter and the thermal response of a material at different damage levels is proposed. Results demonstrate that the correlation can estimate damage evolution with reasonable accuracy in both constant and variable amplitude fatigue processes. It is shown that under the conditions tested the evolution of damage parameter with respect to the normalized fatigue life is independent of the load amplitude, load ratio, loading sequence, material properties, and specimen geometry. The proposed correlation and the relationship between the damage parameter and the normalized fatigue life are employed to develop a non-destructive method to predict the remaining fatigue life of metallic specimens with prior fatigue damage. The method is applied to both constant and variable amplitude loading and the predicted results are found to be in good agreement with those obtained from the experiments.  相似文献   

12.
在多轴载荷下45钢的循环特性   总被引:2,自引:0,他引:2  
通过多轴疲劳试验,研究了在多轴加载条件下45钢的循环特性变化规律,分析了非比例附加强化、多轴循环软化/硬化特性及疲劳寿命对加载路径参数的依赖性,结果表明,相位角主要影响非比例附加强化程度,幅值比主要影响多轴循环软化/硬化特性,二者都影响多轴疲劳寿命。  相似文献   

13.
The effect of positive mean stress on the fatigue behavior of ferritic–pearlitic–bainitic steel has been studied. Specimens, produced from a massive forging, were cycled with two constant stress amplitudes and various positive mean stresses. Plastic strain amplitude and cyclic creep rate were measured during cyclic loading and the effect of the mean stress on saturated plastic strain amplitude and mean strain at half-life was established. Plastic strain amplitude is weakly dependent but creep strain increases with the mean stress exponentially. Fatigue life decreases with the mean stress for both stress amplitudes. The contributions of cyclic plastic strain and cyclic creep to the fatigue damage were evaluated and discussed in relation with the Manson-Coffin curve.  相似文献   

14.
The analysis of fatigue behavior under multiaxial variable amplitude stress states, despite its wide applicability, has not been fully studied. Issues such as varying degrees of nonproportionality of the load history, cycle counting, damage accumulation, failure behavior of the material, and mean stress fluctuations which can significantly affect the results of these analyses have not been well understood. In this study, a methodology for the analysis of fatigue behavior under multiaxial variable amplitude loading conditions is employed which accounts for the aforementioned issues. At its core, the applied methodology uses critical plane analysis based on the failure behavior of each material to assess the fatigue damage. In order to evaluate the performance of the analysis method, axial, torsional, and combined axial‐torsional variable amplitude tests were performed on one ductile and one brittle behaving steel. The applied methodology resulted in close estimation of the experimental fatigue life for both ductile and brittle behaving steels.  相似文献   

15.
Multiaxial fatigue tests were conducted on Sn–3.5Ag solder specimens under axial/torsional loading at room temperature. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of axial stress and shear strain amplitude. A power relationship of ratcheting strain rate versus fatigue life was observed. Equivalent strain approach and critical plane approaches were evaluated with fatigue life data obtained in the tests. Since those approaches excluded the consideration of the ratcheting strain and mean stress, the methods for fatigue life prediction were improper for multiaxial fatigue with ratcheting strain. Coffin model, considered the effect of ratcheting on fatigue life depending on the ratio of ratcheting strain to material ductility, brought the fatigue life predictions on non-conservative side if the ratcheting deformation was large. For this reason, a model with the maximum shear strain range and axial ratcheting strain rate was proposed as a new damage parameter. The new model could not only describe the fatigue life in torsion test, but also predicted torsional fatigue life of the lead-free solder with axial ratcheting.  相似文献   

16.
Elastomeric components have wide usage in many industries. The typical service loading for most of these components is variable amplitude and multiaxial. In this study a general methodology for life prediction of elastomeric components under these typical loading conditions was developed and illustrated for a passenger vehicle cradle mount. Crack initiation life prediction was performed using different damage criteria. The methodology was validated with component testing under different loading conditions including constant and variable amplitude in-phase and out-of-phase axial–torsion experiments. The optimum method for crack initiation life prediction for complex multiaxial variable amplitude loading was found to be a critical plane approach based on maximum normal strain plane and damage quantification by cracking energy density on that plane. Rainflow cycle counting method and Miner’s linear damage rule were used for predicting fatigue life under variable amplitude loadings. The fracture mechanics approach was used for total fatigue life prediction of the component based on specimen crack growth data and FE simulation results. Total fatigue life prediction results showed good agreement with experiments for all of the loading conditions considered.  相似文献   

17.
The cyclic stress–strain response and the low-cycle fatigue life behavior of an aluminum alloy AA2618-T61 forged disk were studied. Fully reversed strain-controlled tests were performed at 200 °C in air at a constant total strain rate and under the total strain ranges of 0.5–0.9%. Specimens cut from longitudinal direction of disk displayed cyclic hardening or softening which was dependent on the total strain range. The variation of low-cycle fatigue life with plastic strain amplitude followed a single-slope Coffin–Manson power-law relationship. Fracture of the samples was predominantly ductile fracture of high density microdimples.  相似文献   

18.
Interactive creep–fatigue behaviour of a nickel-base superalloy (IN 597) has been examined at 850 °C under various strain-limited, cyclic torsional loading conditions. In one test, forward creep deformation was reversed by creep under equal magnitude stress levels and strain limits. In other tests, forward creep strain was reversed by fast monotonic plasticity with and without a subsequent period of relaxation. These cycles were repeated within each test until fracture. This paper examines empirically the influence of a number of test variables upon cyclic creep curves, and demonstrates the usefulness of predictions based upon continuous low cycle fatigue and simple creep data when used in conjunction with a mechanical equation of state. A cyclic equilibrium condition was not achieved from these tests. Instead, a progressive softening occurred giving reductions to the amount of creep strain, creep time interval and reversed peak stress with each new cycle. Such reductions are expressed from derived formulae that embrace the range of inelastic strain, cycle number, creep dwell stress, reversed peak stress, and times expended in creep and relaxation.
Observations made on accumulated creep strain reveal the contribution to a creep–fatigue fracture from cyclic creep. This has led to a modified form of the linear damage rule which can provide conservative life predictions for components operating in service under similar cyclic conditions.  相似文献   

19.
In this study, a sheet fatigue shear test device is designed and applied to the low-cycle fatigue testing of DP900 with varying strain amplitudes within the range of 0.5%–6.0%. The microstructure is analyzed by using electron backscatter diffraction, and fracture surfaces are examined via scanning electron microscopy. Results indicate that the material exhibits cyclic softening behavior after the first two cycles of hardening, with a stable softening rate and a high damage evolution rate related to loading amplitude. The variation of the hysteresis curve in the cyclic process is shown. Total plastic strain energy absorbed increases as loading amplitude decreases and it reaches the peak at approximately 1%. The life prediction model based on plastic strain energy density and strain amplitude is verified to be suitable for the cyclic shear path. The influence of microinhomogeneity on the distribution of stress and strain, especially the deformation of martensite, is closely related to the bi-linear region of fatigue life curve.  相似文献   

20.
The effects of large prestrains (18–40%), produced by in-plane compression, on the asymmetry and the anisotropy of the stress response and on the fatigue life are investigated under fully reversed axial strain for a 345 MPa yield strength V–N high strength low alloy steel sheet. After prestraining, the hysteresis loops are asymmetric and the stress response is anisotropic, i.e., the response differs in directions parallel and perpendicular to that of the compressive prestrain. To understand the cyclic flow stress asymmetry, monotonic tension and compression tests were conducted in these two directions after prestraining. It is shown that the loop asymmetry is related to the Bauschinger effect after prestraining. Two cyclic stress strain curves, one corresponding to the tension side of the hysteresis loops and the other to the compression side, are defined to accurately describe the post-prestraining behavior. The amount of strengthening gained by prestraining is partially retained after cycling. Prestraining increases the fatigue life at low strain amplitudes but decreases it at high strain amplitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号