首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main objective of the present work is to investigate the dry sliding wear behaviour of a magnesium matrix composite reinforced with zinc oxide nano-particles. Magnesium matrix composites have many applications, especially in the automotive and aerospace industries, due to their superior specific properties. A magnesium matrix composite with 0.5 vol.% ZnO nano-reinforcement was prepared using powder metallurgy and was hot extruded to eliminate pores. The wear behaviour of the Mg/ZnO nano-composite was investigated by conducting dry sliding tests as a function of wear with an oil-hardened non-shrinking (OHNS) steel disc as the counterpart on a pin-on-disc apparatus. Wear tests were conducted for normal loads of 5, 7.5 and 10 N at sliding velocities of 0.6, 0.9 and 1.2 m/s at room temperature. The variations of the friction coefficient and wear rate with the sliding distances (500 m, 1000 m and 1600 m) for different normal loads and sliding velocities were plotted and analysed. To study the dominant sliding wear mechanism for various test conditions, the worn surfaces were analysed using scanning electron microscopy. The wear rate was found to increase with the load and sliding velocity.  相似文献   

2.
The mechanical and three-body abrasive wear behaviour of two- and three-dimensional E-glass woven fabric reinforced vinyl ester composites were studied in this article. The mechanical properties were evaluated using universal testing machine as per ASTM D-638. Three-body abrasive wear tests were conducted using rubber wheel abrasion tester (RWAT) under different abrading distances at two loads, wherein the wear volume loss were found to increase and that of specific wear rate decrease. The results indicate that the three-dimensional glass woven fabrics in vinyl ester (G3D–V) have significant influence on wear under varied abrading distance/loads. Further, it was found that G3D–V composite exhibited lower wear rate compared to two-dimensional glass woven fabric reinforced vinyl ester (G2D–V) composite. The worn surface features, as examined through scanning electron microscope (SEM), show ruptured glass fiber in G2D–V composite compared to G3D–V composites.  相似文献   

3.
Three-body abrasive wear behaviour of carbon–epoxy (C–E) and glass–epoxy (G–E) composites has been investigated. The effect of abrading distance, viz., 270, 540, 810 and 1080 m and different loads of 22 and 32 N at 200 rpm have been studied. The wear volume loss and specific wear rate as a function of load and abrading distance were determined. The wear volume loss increases with increasing load/abrading distance. However, the specific wear rate decreases with increase in abrading distance and increases with the load. However, C–E composite showed better abrasion wear resistance compared to G–E composite. The worn surface features have been examined using scanning electron microscope (SEM). SEM micrographs of abraded composite specimens revealed the high percentage of broken glass fiber compared to carbon fiber and also better interfacial adhesion between epoxy and carbon fiber.  相似文献   

4.
In this article, mechanical and tribological performance of the epoxy composites based on graphite filler and/or date palm fibre are comprehensively discussed. The influence of the date palm fibre and/or graphite filler on the microstructure of the materials, tensile fracture samples, and worn surface of tribological samples are examined using scanning electron microscopy. The results revealed that interfacial adhesion of the date palm fibre with the epoxy is the key of the mechanical and tribological performance of natural fibre/polymer composites. The addition of the graphite is highly recommended for the natural fibre/polymer composites which can assist to reduce the friction which in turn enhances the wear characteristics of the polymer composites; however, the high content of the graphite deteriorates the mechanical properties.  相似文献   

5.
Abrasive wear caused by sandy soil of steel coated by epoxy resin was investigated. Experiments were carried out using an abrasive wear tester developed to simulate the wear of the tillage tools under controlled testing conditions. Epoxy coatings were filled by abrasive particles such as aluminium oxide, silicon carbide and silicon oxide of different particle size. Also, epoxy coatings were reinforced by polyamide fibres of different diameters. The test results showed that, relatively lower wear values were displayed by epoxy coatings filled by silicon oxide particles of 5 wt% content. The wear values performed by silicon oxide of (10–20) μm particle size were lower than that displayed by uncoated steel surface. Solid lubricant such as graphite and molybdenum disulphide as filling material caused significant increase in wear due to the weak adhesion between epoxy/solid lubricant layers. Wear of epoxy reinforced by polyamide fibres showed the minimum wear values. Orientation of fibres much affected wear. Parallel fibres represented higher wear than perpendicular ones. The minimum wear was observed for cross plied coatings where shorter wear tracks and higher tensile strength in both perpendicular and parallel directions were existed. The minimum wear values which were lower than that displayed by uncoated steel test specimens were displayed by 0.1 and 0.3 mm polyamide fibre diameters. This observation confirmed the application of the polyamide fibres as reinforcement in epoxy coatings.  相似文献   

6.
In this paper, either graphite (Gr) or carbon nanotubes (CNTs), or both of them were incorporated into carbon fabric reinforced phenolic (CFRP) composites, preparing by a dip-coating and heat molding process, the tribological properties of the resulting composites were investigated using a block-on-ring arrangement. The worn surfaces were observed by scanning electron microscope to understand the mechanism. Experimental results showed that the optimal Gr was more beneficial than CNTs in improving the tribological properties of the CFRP composites when they were singly incorporated. It is well worth noting that the friction and wear behavior of the CNTs-filled CFRP composites were improved further when Gr was added, indicating that there is a synergistic effect between them. Tribological tests under different sliding conditions revealed that the Gr and CNTs-filled CFRP composites seemed to be the most suitable for tribological applications under higher sliding speed and load, and oil lubrication.  相似文献   

7.
This paper reports the d.c. conductivity behaviour of milled carbon fibre reinforced polysulphide modified epoxy gradient composites. Milled carbon fibre reinforced composites having 3 vol. % of milled carbon fibre and poly sulphide modified epoxy resin have been developed. D.C. conductivity measurements are conducted on the graded composites by using an Electrometer in the temperature range from 26°C to 150°C. D.C. conductivity increases with the increase of distance in the direction of centrifugal force, which shows the formation of graded structure with the composites. D.C. conductivity increases on increase of milled carbon fibre content from 0·45 to 1·66 vol.%. At 50°C, d.c. conductivity values were 1·85 × 10−11, 1·08 × 10−11 and 2·16 × 10−12 for samples 1, 2 and 3, respectively. The activation energy values for different composite samples 1, 2 and 3 are 0·489, 0·565 and 0·654 eV, respectively which shows decrease in activation energy with increase of fibre content.  相似文献   

8.
研究了Ultraviolet A(UVA)紫外辐射对碳纤维增强环氧树脂基复合材料产生的影响。测量和分析了从窗户照射到室内太阳光和日光灯辐射的UVA紫外线辐照度, 研究了碳纤维增强环氧树脂基复合材料经辐照度为200 μW·cm-2的UVA紫外灯辐射处理后的力学性能变化, 并通过XPS、 接触角、 纳米压痕、 原子力显微镜(AFM)测试方法研究了其表面性能变化。结果表明: 春夏季节晴天室内太阳光紫外辐照度在14点时达到最大值, 距离窗户0 m处最大值为375 μW·cm-2, 1 m处最大值迅速降至30 μW·cm-2; 对功率40 W的日光灯, 距离日光灯0 m处, 紫外辐照度为87.3 μW·cm-2, 1 m处快速降至5.4 μW·cm-2; 经过45天的紫外辐射, 碳纤维增强环氧树脂基复合材料的层间剪切强度、 弯曲强度和拉伸强度无明显变化; 碳纤维增强环氧树脂基复合材料表面发生氧化反应, 表面硬度和粗糙度变大。  相似文献   

9.
王春齐  江大志  肖加余 《功能材料》2012,43(11):1438-1442
先采用真空袋压法制备含CaCO3/环氧树脂表面功能层的玻璃纤维增强环氧树脂复合材料,再通过化学刻蚀与表面修饰,在玻璃纤维增强环氧树脂复合材料上制备出超疏水表面。采用扫描电镜和动/静态接触角分析仪,表征表面的形貌和疏水性,结果表明,在复合材料表面构建了具有微-纳米尺度二元粗糙结构;采用1%(质量分数)的硬脂酸修饰后,其表面与水的接触角最高达160.03°;制备的超疏水表面结构在室温环境下具有长期的稳定性。  相似文献   

10.
In this paper, the effect of short carbon fiber (SCF), graphite (Gr) and nano-Si3N4 on the friction and wear behavior of polyimide (PI) composites were studied using a block-on-ring arrangement. Experimental results revealed that single incorporation of SCF and Gr can improve the friction-reducing and anti-wear abilities of the PI composites significantly. However, nano-Si3N4 deteriorated the wear resistance of the PI composite drastically as single filler. A synergistic effect was found for the combination of nano-Si3N4 and SCF and Gr, which lead to the best tribological properties. It also can be found that the filled PI composites exhibited better tribological properties under higher PV product (the product of load and sliding speed). Moreover, the filled PI composites showed better tribological properties under oil lubrication and worse tribological properties under water lubrication compared with that under dry sliding condition.  相似文献   

11.
Aluminium alloy (AA) 6061 and 7075 were reinforced with 10 wt.% of boron carbide (B4C) and 5 wt.% of graphite through liquid casting technique. The Scanning Electron Microscope (SEM) and Energy Dispersive Spectrum (EDS) were used for the characterization of composites. The wear experiment was carried out by using a pin-on-disc apparatus with various input parameters like applied load (10, 20, and 30 N), sliding speed (0.6, 0.8, and 1.0 m/s) and sliding distance (1000, 1500, and 2000 m). Response Surface Methodology (RSM) using MINITAB 14 software was used to analyse the wear rate of hybrid composites and aluminium alloys. The worn surfaces of hybrid composites and base alloys were studied through SEM and EDS systems and some useful conclusions were made.  相似文献   

12.
Study of wear behaviour of sintered low alloy steels is required to ascertain their applications for wear resistance. In the present work the influence of copper and molybdenum on wear behaviour of plain carbon steel (Fe–0.5%C) using pin-on-disk arrangement has been addressed. Atomized iron (Fe), graphite (C), copper (Cu) and molybdenum (Mo) elemental powders were suitably weighed and thoroughly mixed in a pot mill to yield the alloy powders of Fe–0.5%C, Fe–0.5%C–2%Cu and Fe–0.5%C–2%Mo. Admixed alloy powders were then compacted and sintered for obtaining preforms of aspect ratio (height/diameter) 1.3 and diameter 25 mm. The sintered preforms were then hot extruded and subsequently machined to obtain wear test specimens of diameter 6 mm and height 50 mm. Using Design of Experiment software, the sliding wear experiments were planned and conducted on a pin-on-disk tribometer. It has been found that there is a substantial improvement in wear resistance of the P/M plain carbon steel by the addition Mo rather than Cu. However coefficient of friction is higher due to presence of hard microstructural phases. Delamination wear is found predominant for both the alloy steels. Empirical correlations for mass loss and coefficient of friction with respect to load/speed have been developed for the alloy steels.  相似文献   

13.
紫外老化对碳纤维增强环氧树脂复合材料性能的影响   总被引:3,自引:0,他引:3  
乔琨  朱波  高学平  谢奔  袁华  吴益民  张春雷 《功能材料》2012,43(21):2989-2992
采用拉挤成型工艺制备碳纤维增强环氧树脂基复合材料,并对其进行人工加速紫外老化实验,对不同老化时间的试样进行弯曲强度测试、冲击强度测试、动态热机械分析(DMA)。结果表明,紫外老化仅影响到受紫外辐射的碳纤维环氧复合材料最外层,使对外层性能敏感的力学性能下降;紫外老化使复合材料玻璃化转变温度(Tg)提高,老化前期提高幅度相对较大,后期变化不明显;随着老化时间的增加,受到紫外辐射的最外层碳纤维/环氧树脂界面受到一定程度削弱。  相似文献   

14.
Multilayered-connected biaxial weft knitted (MBWK) fabric reinforced composites have excellent tensile properties. Three kinds of different fabrics reinforced composites are used in this paper, which are three-layer-connected biaxial weft knitted fabric, four-layer-connected biaxial weft knitted fabric and five-layer-connected biaxial weft knitted fabric. The tensile properties of MBWK fabrics reinforced composites are studied with 0° and 90° directional testing with different carbon fiber volume fractions. The results show that the carbon fiber volume fraction has significant effect on tensile strength of MBWK fabrics reinforced composites. The linear correlation between tensile strength and carbon fiber volume fraction is very well in the certain range, and failure analyses are also available by means of sample debris examination to identify the failure modes and the fracture surfaces.  相似文献   

15.
采用酚醛树脂作为炭纤维表面处理剂, 可以显著提高多种炭纤维和环氧树脂界面强度。通过XPS、AFM、SEM和层间剪切强度等方法, 研究了不同浓度的酚醛树脂表面处理剂对炭纤维增强环氧树脂复合材料层间剪切强度、炭纤维表面元素和化学键组成的影响, 以及炭纤维增强环氧树脂复合材料断面微观形貌的变化。XPS和AFM分析结果表明酚醛树脂和炭纤维表面发生了化学反应, 而且酚醛树脂处理剂浓度越高, 和炭纤维表面发生反应的基团也越多, 表面越光滑平整, SEM和层间剪切强度研究表明酚醛树脂处理后的复合材料界面粘结性能得到很大的改善, 而且界面粘结性能强烈依靠处理剂浓度。   相似文献   

16.
Woven carbon fabric reinforced (55 vol.%) polyetherimide (PEI) composites were fabricated using three types of weaves viz. plain (P), twill (T), and satin-4 H (S) by impregnation technique. Three more similar composites were fabricated with film technique to study the influence of both, weave of fabric and processing technique on the performance properties of the total seven composites including neat PEI. The composites were evaluated for physical and mechanical properties along with erosion wear behavior studied in identical conditions. In almost all properties viz. tensile strength (TS), modulus (TM), elongation to break (e), flexural strength and modulus, interlaminar shear strength (ILSS), etc., film technique proved far inferior to impregnation technique because of improper wetting of fiber strands, as evidenced by SEM studies. CF reinforcement enhanced all the properties of PEI manifold except elongation to break. None of the weaves proved best performer in all the mechanical properties. In case of erosive wear studies, plain weave composite proved slightly better than satin weave composite. Composite with twill weave proved poorest performer. In case of film technique, however, trends were different where plain weave composite proved poorest and satin proved best. Efforts were made to correlate various strength properties with wear resistance WR. The factor (elongation × toughness) showed fairly good correlation with WR. SEM studies were conducted to understand wear mechanisms.  相似文献   

17.
In the current study we investigated the effect of carbon nanotubes (CNTs) addition on the erosive wear response of epoxy resin and carbon fibre reinforced laminates (CFRPs) and demonstrated the positive synergy of CNTs and carbon fibres, which resulted in almost 50% decrease of the erosion rate (ER) of the CFRPs at high impact angles (90°). Incorporation of CNTs led in slight increase of the ER of the epoxy systems, especially at low impact angles. The relative fibre orientation in the CFRPs had a negligible effect on the erosive wear response mainly due to the quasi isotropic nature of the tested CFRPs. Based on the erosion efficiency parameter the response of the epoxy systems was characterised as semi-brittle, while CFRPs behaved in a brittle manner. Scanning electron micrograph provided evidence that the presence of CNTs reduced the amount of broken and/or detached fibres in the case of CFRPs.  相似文献   

18.
为了提高碳纤维增强环氧树脂(CF/EP)复合材料在低温(77K)循环条件下的抗微裂纹性能,采用共沉淀法制备了具有良好顺磁性的Fe_3O_4修饰氧化碳纳米管(Fe_3O_4-O—MWCNTs),并研究了Fe_3O_4-O—MWCNTs在环氧树脂(EP)基体中的有序排列对EP及CF/EP复合材料低温性能的影响。结果表明:Fe_3O_4-O—MWCNTs的有序排列可有效提高EP基体的低温力学性能及降低EP基体的热膨胀系数,相对于纯EP,Fe_3O_4-O—MWCNTs改性EP的热膨胀系数降低了41.6%;相对于CF/EP复合材料,Fe_3O_4-O—MWCNTs改性CF/EP复合材料在低温环境下的微裂纹密度降低了56.2%。  相似文献   

19.
To improve the wear performance of SiC coating for C/C composites at elevated temperatures, the grain was refined by adding small amounts of titanium, in the raw powders for preparing this coating. The related microstructure and mechanical characteristics were investigated by scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and nano-indention. The results show that the grain size of SiC coating decreased from ∼30 μm to ∼5 μm due to the addition of grain refiner. TiC formed by reacting titanium with graphite, can act as perfect heterogeneous nucleus for the nucleation and growth of β-SiC. The wear resistance and fracture toughness of SiC coating was improved by grain refinement. However, the increasing interfaces increased the friction resistance and resulted in the high friction coefficient of fine-grained coating at room temperature. As the temperature rose, oxides layer formed on the surface of fine-grained coating, which can reduce the adhesive wear and decrease the friction coefficient. The fine-grained coating exhibited relative low friction coefficient of ∼0.41 owing to a compact silica film formed on the worn surface at 600 °C, and the wear was dominated by plastic deformation and shear of silica film. The wear of coarse-grained coating was controlled by the fracture of SiC at high temperature.  相似文献   

20.
不同热氧环境(70,130,190℃)对碳纤维复合材料的性能有着重要的影响。分析了不同热氧环境下T800碳纤维/环氧树脂复合材料的失重特性,并对比了老化前后的表面形貌、红外光谱、动态力学性能和层间剪切性能。结果表明:在热氧老化初始阶段,质损率急速上升,老化温度越高质量损失越快;试样表面形貌随热氧温度的升高其破坏程度逐渐加剧,在190℃老化后,纤维表面树脂脱落严重,纤维与纤维之间出现裂缝空隙,无树脂填充,在此老化温度下,试样发生了不可逆化学变化;试样的玻璃化转变温度会随老化温度的升高而变大,但内耗呈现先降低后增大再降低的趋势,在70,130,190℃热氧老化后试样剪切强度分别提高6.0%,13.7%和2.1%。相关实验结果和实验现象可为后续研究新型国产T800碳纤维/环氧复合材料提供数据参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号