首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modifications are made in the inherent flaw model of Waddoups, Eisenman and Kaminski (known as the WEK model) for accurate prediction of notched tensile strength of composite laminates containing a sharp notch. To examine the adequacy of the model, fracture data of center cracked carbon/epoxy composite laminates with various lay-ups are considered. The notched strength estimates are found to be close to the test results.  相似文献   

2.
In this study a comparison is made between the tensile static and fatigue behaviours of quasi-isotropic carbon/PEEK and carbon/epoxy notched laminates, selected as separate representatives of both tough and brittle matrix composites. Damage progression was monitored by various non-destructive (ultrasonic scanning and x-radiography) and destructive (deply and microscopic examinations) techniques, and by continuously measuring the change in stiffness, in order to identify the effect of damage on mechanical properties.
The experimental observations indicated that fatigue damage in carbon/epoxy laminates consists of a combination of matrix cracks, longitudinal splitting and delaminations which attenuate the stress concentration and suppress fibre fracture at the notch; as a consequence, fatigue failure can be reached only after very high numbers of cycles while tensile residual strengths continuously increase over the range of lives investigated (103–106 cycles). Due to the superior matrix toughness and the high fibre-matrix adhesion, the nature of fatigue damage in carbon/PEEK laminates strongly depends on the stress level. At high stresses the absence of early splitting and delaminations promotes the propagation of fibre fracture therefore resulting in poor fatigue performances and significant strength reductions; while at low stress levels damage modes are matrix controlled and this again translates into very long fatigue lives. These results indicate a strong influence of the major damage mechanisms typical of the two material systems on the behaviour of the laminates, with the nature, more than the amount, of damage appearing as the controlling parameter of the material response up to failure.  相似文献   

3.
In this paper the failure mechanisms of unidirectional aligned carbon fibre/epoxy composites are investigated. Experimental results are presented for the strength of carbon/epoxy composite tows, as well as for single carbon fibres supplied in the sized and unsized condition. Laser Raman spectroscopy was used in this study to assess the effect of fibre breaks on the stress distribution within a composite. Fibre stress mapping of composite tows using laser Raman spectroscopy showed redistribution due to fibre failure and a value of the stress concentration factor, Kr, was obtained. The results were analysed using a Weibull distribution for the strength of the reinforcing fibres and composite.  相似文献   

4.
The contrasting characteristics of damage evolution have been examined in a multidirectional carbon/epoxy composite laminate (IM7/8551-7) subjected to both quasi-static and dynamic loading. Our experiments were performed on bend-test bars that were loaded either in ‘supported' four-point bending or under ‘unsupported' conditions with a Hopkinson pressure bar to induce dynamic loading. We found differences in the damage that occurred in specimens loaded by the two techniques, in terms of the number of cracks and the length of the cracks. In the case of quasi-static loading, there were many matrix cracks within individual plies and only a few delamination cracks between plies; the maximum ratio of numbers of matrix to delamination cracks observed was 6:1. Despite their small number, the delamination cracks had a greater total length than the matrix cracks, and specimen failure occurred as a result of delamination crack propagation. During dynamic loading, the ratio between numbers of matrix and delamination cracks was 3:1, and in this case the ratio between the total crack lengths was unity. A quantitative assessment of damage induced during quasi-static bending was made from specimen stiffness results. Using simple beam theory and knowing the location of the damage, we correlated beam stiffness to the materials effective elastic modulus. We found that the composite's effective modulus decreased rapidly with small amounts of initial damage, but that subsequent increases in damage decreased the effective modulus at a much lower rate.  相似文献   

5.
A semi-empirical analysis on residual compressive strength (RCS) of carbon/epoxy woven composite laminate was developed which included the damage effects caused by impact and hygrothermal cycling. Impact damage is modelled as a soft inclusion with an exponentially reduced stiffness and the stiffness is further reduced due to hygrothermal cycling. A complex variable method was used to determine the in-plane stress distribution near the impact-induced damage and point stress failure criterion is then used to predict the failure load. Based on the semi-empirical model, the RCS can be related to damage width, damage intensity, undamaged strength and a degradation factor due to hygrothermal cycling. The results from the analysis coincide reasonably well with the experimental data for the plain-woven fabric laminates.  相似文献   

6.
《材料科学技术学报》2019,35(11):2693-2704
Three-dimensional finite element (FE) models of carbon/epoxy composite laminates with copper mesh and aluminum mesh protection were established subjected to lightning strike, in which different mesh spacing was selected. Effectiveness of numerical method was verified and impulse current waveforms with different current peaks were applied according to aircraft lightning zones. Thermal-electrical material parameters varying with temperature were added into numerical models. Element deletion method was used to deal with lightning ablation elements of composite structures. The results show that ablation area and depth of composite laminates with metal mesh protection are significantly smaller, which proves good protection effectiveness of metal meshes on anti-lightning strike. The denser the mesh spacing, the better the anti-lightning strike will be. Protection of composite laminates with copper mesh has better effects than that of aluminum mesh. Considering the effect of mesh spacing variation on composite structural weight and anti-lightning strike, the ideal mesh spacing was obtained.  相似文献   

7.
This paper investigates the effect of fibre volume fraction on the fatigue behaviour and damage mechanisms of carbon/epoxy laminates. Epoxy resin and unidirectional carbon/epoxy specimens with two different fibre volume fractions are tested under quasi-static tensile and tension–tension fatigue loads at angles of 0°, 45° and 90°. Fracture surfaces are studied with scanning electron microscopy. The results show that stiffness and strength increase with increasing fibre volume fractions. The damage behaviour of off-axis specimens changes with increasing fibre volume content and the height of the applied cyclic load. While matrix cracking and interfacial debonding are dominating damage mechanisms in specimens with low fibre content, fibre bridging and pull out are monitored with increasing fibre content. The higher the applied load in fatigue tests transverse to fibre direction, the more similar behave specimens with different fibre volume fractions.  相似文献   

8.
Specimen-size effect and notch-size effect on the tensile strength of woven fabric carbon/epoxy laminates are evaluated and modeled. For two different layups of [(0/90)12] and [(±45)2/(0/90)5]S, respectively, static tension tests were performed on two-dimensional geometrically similar unnotched and double-edge notched specimens scaled to three different sizes. Experimental results demonstrate that the notched strength of the woven CFRP laminates depend on the size of specimen as well as the size of notch. The ratio of notched strength to unnotched strength decreases as the length of notch increases, regardless of the size of specimen. For a given size of notch, the notch strength ratio becomes larger with decreasing size of specimen. A notch-size effect law is derived by means of the Neuber interpolation method. A specimen-size effect is embedded into the notch sensitivity parameter involved by the notch-size effect law to establish a size effect law that can cope with these two kinds of size effect. The engineering size effect law proposed can adequately describe the specimen-size effect as well as notch-size effect on the tensile strength of the woven CFRP laminates. It is also demonstrated that the size effect law allows determining the size independent fracture toughness on the basis of notched strengths of small specimens that fail in a quasi-brittle manner.  相似文献   

9.
Mode-I interlaminar toughness improvement through epoxy-dissolvable thermoplastic phenoxy interleaves of different surface-to-volume ratios is reported. Shear yielding around the crack tip in the reaction-induced phase separated blend morphology was found to be the main toughening mechanism responsible. The dissolution behaviour of thermoplastic phenoxy fibre within epoxy resin was studied, and a simple relationship between dissolution time, temperature, and original fibre diameter is proposed. Thermoplastic interleaves in the form of continuous films and electrospun fibre mats of equivalent weights were employed in order to study the effect of surface-to-volume ratio on dissolution and toughening behaviour. The toughness improvements obtained for the dissolvable thermoplastic nanofibre interleaves were the highest ever reported for these types of toughening concepts, with a dramatic increment from 0.56 kJ/m2 to 1.90 kJ/m2 with only 1.6 wt.% phenoxy interleaves. Differences in toughening behaviour between continuous films and nanofibre mats are explained in relation to differences in dissolution time.  相似文献   

10.
实验研究表明,纤维束/环氧树脂复合材料试件的横向拉伸强度与工程上常用的单向层合板横向拉伸强度在趋势上具有很好的相关性,但是数值上存在一定差距。本文使用两种碳纤维和两种环氧树脂制备了三种纤维束/环氧树脂复合材料和单向层合板,并分别测量了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度,以及环氧基体的拉伸强度。在实验基础上,应用Griffith断裂强度理论建立了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度的关系模型,通过两种复合材料实验的结果拟合了该模型中的参数。利用第三种复合材料实验进行校验,发现该模型预测的单向层合板横向拉伸强度与实测强度之间达到很好的一致性,相对偏差为9%。采用本文提出的方法,可以用较为简单的纤维束/环氧树脂复合材料和环氧基体拉伸试验预测单向层合板的横向拉伸强度。  相似文献   

11.
In this work, the mechanical properties of carbon nanotube reinforced epoxy adhesives are investigated experimentally. The investigations are intended to characterize the physical and mechanical properties of nano-reinforced structural epoxy adhesives and to further highlight some of the complex phenomena associated with these materials. We describe the dispersion methodology used to disperse the carbon nanotubes into the considered adhesive and provide details pertaining to adherent surface preparation, bondline thickness control and adhesive curing conditions. Furthermore, the following tests are described: (i) dogbone tensile testing, (ii) tensile bond testing, (iii) double lap shear and (iv) double cantilever beam fracture toughness testing. The experimental observations indicate a critical carbon nanotube concentration in the vicinity of 1.5 wt% that results in the largest improvements in the measured properties. At concentrations exceeding this critical value, the properties begin to degrade, in some cases, to levels below that of the pure epoxy. Advanced electron microscopy techniques and rheological assessments indicate that this is mainly due to the agglomeration of the carbon nanotubes at higher concentrations as a result of increased resin viscosity and the consequent resistance to dispersion.  相似文献   

12.
Composite single-lap bonded joints were tested to study the combined effect of the environmental condition and the manufacturing method as they pertain to joint strength and failure conditions. Three different environmental conditions and four different manufacturing methods were considered. In terms of the manufacturing method, cocured joints without an adhesive (CCN) showed the highest strength in all environments. Comparing the effect of the environmental conditions, the elevated temperature and wet condition (ETW) gave the best results for all joints except co-bonded joints. In co-bonded joints, the highest strength was found in the cold temperature condition (CTD).  相似文献   

13.
An investigation into size effects and notch sensitivity in quasi-isotropic carbon/epoxy laminates was carried out. The purpose is to draw a complete picture of the strength scaling in unidirectional, quasi-isotropic, and notched carbon/epoxy laminates. A link was established between the strength scaling of the unidirectional and quasi-isotropic laminates. Efforts were made to understand the relationship between unnotched and open-hole strengths. For very small holes, the notched strengths approach the unnotched strength limit. A scaling law based on Weibull statistics was used to predict the unnotched laminate strengths. For very large holes, the same scaling law in conjunction with a detailed 3D ply-by-ply FE analysis with matrix cracks in the 90° plies and delamination cohesive interface elements was used to predict the large notched strengths. A good agreement between the modelling and experimental results was achieved. The effects of 90° matrix cracks on unnotched and notched strengths were also studied.  相似文献   

14.
High strain rate compression response of carbon/epoxy laminate composites   总被引:6,自引:0,他引:6  
Composite materials exhibit excellent mechanical properties over metallic materials and hence are increasingly considered for high technology applications. In many practical situations, the structures are subjected to loading at very high strain rates. Material and structural response vary significantly under such loading as compared to static loading. A structure that is expected to perform under dynamic loading conditions, if designed with the static properties, might be too conservative. Hence, it is necessary to characterize the advanced composites under high strain rate loading. In the current investigations, the response of carbon/epoxy laminated composites under high strain rate compression loading is considered using a modified split Hopkinson Pressure Bar (SHPB) setup at three different strain rates of 82, 164 and 817 s−1. The laminates were fabricated using 32 plies of a DA 4518 unidirectional carbon/epoxy prepreg system. Both unidirectional and cross-ply laminates were considered for the study. In the case of cross-ply laminates, the samples were tested in the thickness as well as in the in-plane direction. The unidirectional laminate samples were subjected to loading along 0° and 90° directions. Dynamic stress–strain plot was obtained for each sample and compared with the static compression test result. The results of the study indicate that the dynamic strength (with the exception of through the thickness loading of cross-ply laminates) and stiffness exhibit considerable increase as compared to the static values within the tested range of strain rates.  相似文献   

15.
Effects of fibre/matrix adhesion and residual strength of notched polymer matrix composite laminates (PMCLs) and fibre reinforced metal laminates (FRMLs) were investigated. Two different levels of adhesion between fibre and matrix were achieved by using the same carbon fibres with or without surface treatments. After conducting short-beam shear and transverse tension tests for fibre/matrix interface characterisation, residual strength tests were performed for PMCLs and FRMLs containing a circular hole/sharp notch for the two composite systems. It was found that laminates with poor interfacial adhesion between fibre and matrix exhibit higher residual strength than those with strong fibre/matrix adhesion. Major failure mechanisms and modes in two composite systems were studied using SEM fractography. The effective crack growth model (ECGM) was also applied to simulate the residual strength and damage growth of notched composite laminates with different fibre/matrix adhesion. Predictions from the ECGM were well correlated with experimental data.  相似文献   

16.
Purpose of the paper is to investigate the possibility of extending the interlaminar shear strength (ILSS) results obtained by four-point bend testing of unidirectional laminates to multidirectional laminates, such as cross-ply and quasi-isotropic, the testing of which is a common practice in the industry but has not been previously validated in the literature. An experimental database is gathered through the known modified version of the ASTM D2344 short beam test and the results show a surprising proximity of results for the three different fiber architectures for the same composite system. Various finite element analyses were developed using ANSYS® software, allowing for better insight on the mechanics of delamination in four-point bending, and showed extremely good agreement with the experimental values. The final and most accurate model partially confirmed observations made by other authors, and includes the ‘skewed’ profile of the shear stress through the thickness and its variation along the length, the distribution of the shear stress across the width, the location of delamination initiation and propagation and maximum ILSS and the shear stress contour.  相似文献   

17.
The contemporary Formula 1 racing car makes extensive use of advanced composite materials in its construction. The design, manufacture and ultimate performance under compression of composite suspension push-rods, that typically could be used in a Grand Prix racing car, are described in this present paper. An aerofoil cross-section has been used based on different lay-ups of carbon/epoxy composite. One push-rod was manufactured using a uniform layup of unidirectional and woven cross-ply prepreg, whilst a further three push-rods were manufactured with a tapered layup of unidirectional and woven cross-ply prepreg. Failure mechanisms including fibre microbuckling, fibre kinking and fibre fracture were observed, whilst comparisons have been made between the experimentally observed failure strains and those that were predicted using simple buckling theory. The ultimate compressive strength of the structural component was significantly less than that of the carbon/epoxy composite.  相似文献   

18.
Due to increasing use of clay/epoxy nanocomposites in industry, investigation of mechanical properties of clay nanocomposites has become of great interest. While the stiffening mechanism of clay nanocomposites is well documented, there is still not a clear understanding about how addition of clays affect the fracture behavior of clay/epoxy nanocomposites. The main aim of this paper is to measure and explain the effect of clays on ductility reduction of these nanocomposites. First, epoxy and clay/epoxy nanocomposites with different clay weight ratio were built. Then, the damage parameters of epoxy and clay/epoxy nanocomposites were measured by variation of the elasticity modulus. Based on loading–unloading experiments, the Lemaitre damage parameters for epoxy and clay/epoxy nanocomposites were extracted. Crack initiation and propagation in dog-bone sample were simulated for epoxy and clay/epoxy nanocomposites using the eXtended Finite Element Method (XFEM). The comparison between experimental and numerical results shows that the proposed method can predict the crack initiation location and propagation path in clay/epoxy nanocomposites.  相似文献   

19.
The dynamic penetration of graphite/epoxy laminates as a result of impact by a blunt-ended projectile is investigated in the present study. The ballistic limit is determined by a series of high-velocity impact tests. A dynamic finite element analysis is performed to simulate the penetration process in composite laminates. A previously developed static penetration model is incorporated into the analysis to predict the ballistic limit. The ballistic characteristics are represented by the relationship between the striking and residual velocities of the projectile. Good agreement between experimental data and computational results implies that the ballistic limit of graphite/epoxy laminates can be predicted by the present analysis without performing dynamic impact tests.  相似文献   

20.
采用双酚A型环氧树脂(DGEBA)、改性咪唑(MIM)及改性脂肪胺(MAA)研制快速固化树脂体系。分别利用DSC和流变仪测试了树脂体系的固化特性与流变行为,优选了树脂配方。采用真空辅助树脂灌注工艺(VARIM)制备了快速成型的碳纤维/环氧复合材料层板,考察了层板的成型质量和力学性能,并与常规固化的层板性能进行了对比。结果表明:采用优选的树脂配方,120 ℃下树脂在5 min内固化度达95%,碳纤维/环氧复合材料层板成型固化时间可控制在13 min以内,固化度达95%以上,并且没有明显缺陷;与常规固化相比(固化时间大于2 h),快速固化碳纤维/环氧复合材料层板的弯曲性能和耐热性能降低幅度较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号